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日本の多国籍企業における海外研究開発と特許出願 

文部科学省 科学技術・学術政策研究所 第 1 研究グループ 

 

要旨 

本稿では、多国籍企業内における国境を越えた研究開発（R&D）活動の配分と R&D 成果との

関係を分析する。より具体的には、R&D成果を特許出願数やその質の指標を用いて計測し、知識

フロー・ネットワークの中心により近い国・産業により多くの R&D を配分することが、多国籍企業の

R&D 成果につながるのかどうかに注目する。我々は、日本の製造業多国籍企業について、本社

企業とその海外現地法人の企業レベルのデータに、各多国籍企業の特許出願状況を接続したデ

ータセットを用いる。さらに、世界各国で出願された特許の引用情報を用いて、世界の知識フロー・

ネットワークを可視化し、そこから各国・産業のネットワーク中心性指標を計測する。固有ベクトル中

心性指標を用い、この中心性が高い国・産業ほど、より多くの国・産業と特許の引用・被引用関係

を持ち、世界の知識フロー・ネットワークの中でより中心に近いと解釈する。 
本稿の分析によると、知識フロー・ネットワークの中心性が高い国・産業により多くの R&D活動を

配分している多国籍企業ほど、質を考慮した特許出願数が多くなることが確認された。一方、質を

考慮しない特許出願数と、R&D の配分との間には、統計的に有意な関係は見いだされなかった。 
 

 

 

Global Knowledge Flow and Japanese Multinational Firms’ Offshore R&D 
Allocation and Patenting  
First Theory-Oriented Research Group, National Institute of Science and Technology Policy 
(NISTEP), MEXT 
 
ABSTRACT 

This paper examines whether allocating more research and development (R&D) 
activities to a country-industry pair with a higher intensity of knowledge flows improves the 
innovation performance of multinational enterprises (MNEs). We use the number of patent 
applications as a proxy for innovation outcome and construct firm-patent-matched data for 
Japanese manufacturing MNEs, including data on MNEs’ offshore R&D expenditure and 
information on patents filed by both parent firms and overseas affiliates. Moreover, as a 
proxy for the intensity of knowledge flows, we use the eigenvector centrality of each country-
industry pair in the global knowledge flow network, utilizing patent citation information. 

We find that the quality-adjusted number of patent applications tends to be higher for 
MNEs that allocate more R&D activities to country-industry pairs that are more central in 
the network of global knowledge flows. However, we did not find any significant 
relationship between the country and industry distribution of offshore R&D and the number 
of patent applications. 
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１．研究の背景と目的 

1990 年代以降、世界的に生産工程の国際分業（フラグメンテーション）が進展し、多くの

企業が生産工程のオフショアリング（自社の海外拠点で実施ないし海外の他社に委託するこ

と）を拡大してきた。フラグメンテーションの進展において日本の多国籍企業も含め、国境を

越えて事業展開する多国籍企業が重要な役割を果たしてきた。多国籍企業の生産活動と比

べると、研究開発（R&D）活動は国境を越えて分散させずに本社近隣で集中的に行われる

傾向が強いものの、近年は R&D 活動のオフショアリングも増加してきている。  
先進国の多国籍企業にとって、学術・研究水準が高い本国で R&D 活動を集中的に行うこ

とは、範囲の経済も働いて新技術を生みだしやすく、技術流出を防ぐという面でも利点があ

る。一方、海外で R&D 活動を行うことによる利点も指摘されてきた。例えば、企業の持つ既

存の技術に基づいて、現地消費者のニーズや嗜好に合わせた製品開発・改良を行う

（home-base-exploiting R&D：本国の技術を使って現地市場を開拓）ことにより現地市場で

優位に立つことが可能になるかもしれない。また、現地のさまざまな研究資源を活用すること

によって新しい技術の獲得が促進される（home-base-augmenting R&D：本国の技術の補

強）ことも期待できる  。これらの利点に着目し、多くの先行研究において R&D のオフショアリ

ングに関して、その決定要因や効果が分析されてきた。  
実際に、多くの先行研究が R&D オフショアリングと R&D 成果との間に正の関係を見出し

ており、オフショアリングによって企業はホスト国の技術知識に触れ、自らの競争力を高めて

いることが示唆される。そして、多国籍企業は、ホスト国の属性に従って、さまざまなタイプの

R&D（先行研究では開発・設計型と基礎・応用研究型の 2 タイプに分けられることが多い）を

異なるホスト国で実施している。しかし、これまでの研究では、多国籍企業が R&D 活動を自

社の拠点間でどのように配分しているか、そして、その配分によって多国籍企業全体の R&D
成果がどう異なるかはほとんど分析されてこなかった。  

一方、日本の多国籍企業も、海外拠点での R&D を増加させてきたが、その成果の指標の

一つとして特許出願数をみると、2000 年代半ば以降減少傾向にある。日本企業は、他の先

進国と比べても依然として活発に特許の出願・登録を行っているものの、近年は、中国や韓

国などのアジア企業から猛烈な追い上げを受けている。1990 年代初頭には米国特許商標

庁（USPTO）への出願数上位に日本企業が数多く名を連ねていたものの、近年は、ほとんど

の日本企業が上位ランキングから姿を消している。  
そこで本稿では、日本の多国籍企業のデータを用いて、R&D の国境を越えた配分と

R&D 成果との関係に焦点を当てる。具体的には、特許の出願数や質を考慮した出願数で

R&D 成果を測り、より知識フローの集約度の高い国・産業により多くの R&D 活動を配分す

ることが、多国籍企業全体の特許出願を活発にするのかを分析する。知識フローの集約度

が高く、技術知識のスピルオーバーをより多く受けやすい場所により多くの R&D 活動を配分

する企業は、自社の技術力を向上させ、より多くの質の高い成果を上げると期待される。  
 

 

２．利用したデータ 

本稿の分析に用いるのは 経済産業省「企業活動基本調査」の企業の調査票情報、「海外

事業活動基本調査』の本社企業及び海外現地法人の調査票情報  、そして、知的財産研究
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所が整備し公開している  IIP パテントデータベースと欧州特許庁（EPO ）が整備する  
PATSTAT に収録された特許の情報である。多国籍企業の日本本社の企業情報を「企業活

動基本調査』から抽出し、まず本社レベルの年次パネルデータを作成する。そこに、「海外事

業活動基本調査』に収録された海外現地法人情報を接合する。さらに、「企業活動基本調査』

に収録された企業情報と、特許データ（PATSTAT 及び  IIP パテントデータベース）に収録さ

れた各特許の出願人を接合する。そして、多国籍企業の本社が日本国特許庁（JPO）に出願

した特許と、多国籍企業の海外現地法人が JPO を含む世界の特許庁に出願した特許を特

定する。しかしながら、日本の本社企業が JPO 以外にも特許を出願（国際出願）している可

能性があり、また本社と海外現地法人が共同で出願するケースもある。そこで、PATSTAT に

収録された特許ファミリー情報を用いて、本社企業が国際出願した特許を識別し、同一特許

を複数国の特許庁に出願しているような重複を除いている。さらに、本社と現地法人の共同

出願のような重複も除き、各多国籍企業の特許出願数を特許ファミリー・レベルで集計して、

多国籍企業の R&D 成果の代理変数とする。本稿では、日本の本社が製造業に分類され、

かつ 1 社以上の海外現地法人を持つ多国籍企業を対象とし、1995 年～2011 年の期間につ

いて、本社、海外現地法人、出願特許の情報を接合したデータセットを分析に利用する。  
また、特許の質を考慮した出願数を計測するため、OECD Patent Quality Database に収

録されている、さまざまな特許の質指標を利用する。OECD Patent Quality Database には、

EPO か USPTO に出願された各特許について、15 種類の質指標を計測したものが収録され

ている。そのうち、多くの先行研究において被引用数が特許の質指標として利用されている

ことから、公開 5 年後までの被引用件数を質指標として利用する。そのほかに、generality
（技術の汎用性）、originality（技術の独創性）、 radicalness（技術の革新性）と２種類の

quality index（複数の質指標を合成して作成したインデックス）とを利用する。これら質指標

をウェイトとして、各多国籍企業について質を考慮した特許出願数を計測し、これも R&D 成

果の代理変数として利用する。  
 一方、本稿においては、世界各国・産業の知識フローの集約度が重要な変数である。世界

の知識フロー・ネットワークにおける各国・産業の相対的な位置を示す指標を計測し、それを

知識フローの集約度の代理変数として用いる。ある人や企業が生み出した技術や知識が他

の人や企業に吸収されたときに知識フローが発生するのであり、知識フロー・ネットワークの

中心に近い場所では、ネットワーク内の他社から吸収したさまざまな知識が蓄積され、また他

社が吸収したいと思うような先端的な知識が生まれていると想定される。本稿では、国境を越

えた知識フローに焦点を当て、外国で出願された特許との引用・被引用関係を、国や産業を

越えた知識フローと考える。国・産業間の知識フロー・ネットワークの固有ベクトル中心性を

計測し、それをネットワーク内における相対的位置の指標として用いる。固有ベクトル中心性

は、各国・産業内の知識ストックの大きさだけでなく、他の国・産業とどれだけ強く結びついて

いるかも反映した指標となっている。  
 

 

３．分析方法 

本稿では、まず、日本の製造業多国籍企業の海外 R&D の規模や分布、そして、特許出

願数や質を考慮した出願数の推移などを概観する。そして、知識生産関数を推定することに
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よって、各多国籍企業の R&D 成果の決定要因を分析する。R&D 成果に影響を与える要因

として、R&D 支出規模や R&D オフショアリングの比率、そして、企業規模や生産のオフショ

アリングの規模を考慮する。ただし、最も注目するのは、多国籍企業内における R&D オフシ

ョアリングの配分である。各国・産業の知識フロー・ネットワークにおける中心性を、各多国籍

企業の R&D 支出シェアで加重平均することにより、各企業が知識ネットワークのより中心に

近い国・産業により多くの R&D を配分しているかどうかを示す変数を作成する。もし、その変

数が R&D 成果と正の関係にあれば、知識ネットワーク中心性の高いところにより多くの R&D
を配分することが、より多くの技術知識スピルオーバーを受け、より大きな成果につながると

解釈される。また、R&D の配分と R&D 成果との間の因果関係を捉えるため、米国多国籍企

業の R&D オフショアリングのデータを利用して操作変数を作成し、操作変数法での推定も

行う。  
 

 

４．分析結果 

まず、日本の製造業多国籍企業の R&D オフショアリングとその分布、また特許出願状況

をみる。国内経済の長期的な停滞を反映してか、本社での R&D 支出合計は 1995年～2011
年の期間で 1.5 倍にしか増えていない一方、海外現地法人における R&D 支出合計は同期

間に 3.3 倍に増えている。2000 年代半ば以降、特に在中国現地法人の R&D 支出が増えて

いるものの、海外 R&D 支出の 50%近くは北米であり、欧州も 30％近くを占めるなど、依然と

して欧米に集中している。概要図表 1 は、横軸に各国・産業の知識フロー・ネットワーク中心

性をとり、縦軸に製造業多国籍企業の海外 R&D 支出合計に占める各国・産業のシェアをと

って、両者の関係を 1995 年と 2011 年についてみたものである。ここから、ネットワーク中心

性の高い、いくつかの国・産業（例えば、米国の医薬品やコンピュータ・エレクトロニクス、化

学、機械産業など）に R&D が集中する傾向が見て取れる。しかし、ネットワーク中心性が比

較的高いにもかかわらず、日本の多国籍企業がほとんど R&D を行っていない国・産業も多

く存在していることも分かる。  
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概要図表 1：知識フロー・ネットワーク中心性と、日本の製造業多国籍企業の R&D オフショ

アリング 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

一方、日本の製造業多国籍企業の特許出願数は 2000 年代半ばから減少傾向にある。

EPO や USPTO への出願数は減少傾向ではないものの、2000 年代半ばから増加しておら

ずほぼ横ばいである。上述の OECD Patent Quality Database の指標を用いて、EPO や

USPTO に出願された特許の質でウェイト付けした出願数（1 社あたり）の推移をみたのが概

要図表 2 である。どの指標でみても、2000 年代初めごろまでは質を考慮した出願数が増え

ているようにみえるが、2000 年代半ばごろから少しずつ低下傾向である。特に、被引用数を

みると、2000 年代初めから低下が続いている。  
 
 

概要図表 2：質を考慮した 1 社あたり特許出願数平均値の推移（EPO／USPTO に出願して

いる特許のみ）  
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最後に、知識生産関数を推定した結果、どの国・産業に R&D をより多く配分するかは、質

を考慮した特許出願数と強い正の関係があることが分かった。つまり、知識フロー・ネットワー

ク中心性の高い国・産業により多くの R&D を配分している多国籍企業ほど、質の高い特許

をより多く出願している傾向が見いだされた。一方、企業全体の R&D 支出と（質を考慮しな

い）特許出願数との間には正の相関関係があり、R&D 規模が大きいほど特許出願数は多い

傾向はある。しかし、EPO や USPTO に出願し、かつ多く引用されるような質の高い特許の出

願には、R&D 規模よりも R&D の国・産業間の配分が重要であることを示す結果を得た。  
 

 

５．結論と政策的含意 

本稿の分析の結果、より質の高い R&D 成果を生み出すには、知識フロー・ネットワーク中

心性の高い国・産業により多くの R&D を配分することが重要であるという示唆を得た。知識

フロー・ネットワークの中心に近い場所では、さまざまな国・産業との間で知識が活発に交換

され、より多くのさまざまな知識のスピルオーバーを受けやすいと想定される。このような場所

でより重点的に R&D 活動を行うことが、質の高い成果に繋がるといえよう。  
しかし、実際の日本の製造業多国籍企業の海外 R&D 支出のデータを見てみると、必ずし

もそういった国・地域へ R&D が十分にシフトしているとはいえない。1995～2011 年の期間

に知識フロー・ネットワーク中心性が大きく上昇したのは、中国やインド、韓国、台湾などの産

業が多い。日本の製造業多国籍企業は、コンピュータ・エレクトロニクス産業など、中国では

R&D を大きく増加させている。しかし、その他のアジア諸国の産業を見ると、ネットワーク中

心性の高い国・産業で R&D が大きく増加しているとはいえない。例えば、米国の多国籍企

業は、これら 4 つの国・地域での製造業の R&D 支出を 1995～2011 年の期間に 27.5 倍に

増加させている。一方、同期間に日本の製造業多国籍企業の当該国・地域での R&D 支出

は 7.5 倍にしかなっていない。日本企業としては、急速に技術水準が向上し、世界の知識フ

ロー・ネットワークの中心にシフトしてきている国・産業へ、より多くの R&D を配分するなど、

より望ましい R&D 配分を目指していくことが求められる。特に、質の高い R&D 成果を得るた

めには、知識フロー・ネットワークのハブに近い場所で、より多くの技術知識を吸収することが

重要である。ただし、今後の R&D 活動の展開に際しては，知的財産権保護の問題や、また

地政学リスク等も考慮する必要もあるだろう。  
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1. Introduction 
 
Over the past few decades, production processes have become increasingly fragmented and 
dispersed across borders, and multinational enterprises (MNEs), including Japanese MNEs, have 
played an important role in the expansion and deepening of the international division of labor. 
MNEs unbundle production processes and relocate them to offshore locations taking the 
comparative advantages of each location into account, and such MNEs show much better 
performance than domestic firms in terms of their size, productivity, profitability, and managerial 
and human resources. Although MNEs tend to retain research and development (R&D) activities 
close to their headquarters, a growing number of MNEs have offshored R&D activities to foreign 
locations (see, e.g., UNCTAD, 2005; OECD, 2010; Belderbos et al., 2016; Iversen et al., 2017). 

Offshore R&D activities are expected to contribute to technological development to support 
local production and product development tailored to the local market (home-base-exploiting 
R&D). Offshore R&D activities may also promote development of new technologies by utilizing 
researchers, research institutes, and various other science and technology-related resources abroad 
(home-base-augmenting R&D).1 Given these potential benefits of R&D offshoring, previous 
studies have investigated the determinants and effects of offshore R&D, examining, for example,  
(1) what firm and location characteristics are important as determinants of offshore R&D and 
whether the determinants differ depending on the type/purpose of offshore R&D; (2) whether 
offshore R&D contributes to firms’ technological development measured by patents or 
productivity; and (3) what firm and location characteristics are associated with successful offshore 
R&D. 

Regarding the determinants of offshore R&D, Shimizutani and Todo (2008), Ito and 
Wakasugi (2008), and Belderbos et al., (2016), for example, show that the technological 
capabilities of host regions/countries are an important factor, particularly for home-base-
augmenting offshore R&D. As for the effects of R&D offshoring, Todo and Shimizutani (2008) 
and Castellani and Pieri (2013) show that R&D offshoring is likely to improve productivity at 
home, while other studies find that firms with active R&D offshoring tend to file for more patents 
(e.g., Almeida and Phene, 2004; Iwasa and Odagiri, 2004; Rahko, 2016; Belderbos et al., 2016; 
Yamashita and Yamauchi, 2019). Furthermore, studies such as Almeida and Phene (2004) and 
Iwasa and Odagiri (2004) take technological characteristics (the former focus on technological 
diversity while the latter focus on technological strength) of host regions/countries into account 
and find that MNEs tend to be more innovative in host regions/countries with higher technological 
capabilities, suggesting that offshoring firms take advantage of R&D resources in host 

 
1 See, for example, Kuemmerle (1997) and Thursby and Thursby (2006). 
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regions/countries. Offshoring firms are not only able to directly employ local researchers but also 
learn from other technologically advanced firms, local science communities, and so on. In other 
words, firms are more likely to receive knowledge spillovers by offshoring in such places.  

In fact, a large number of studies have found a positive relationship between R&D offshoring 
and innovation, suggesting that offshoring is likely to allow innovating firms to tap into the 
technological capabilities of host countries and improve their competitive advantage. However, 
the literature has devoted scant attention to the impact of R&D allocation across overseas affiliates 
within MNEs on their innovation performance.2 As highlighted by Shimizutani and Todo (2008) 
and Belderbos et al. (2016), MNEs do allocate different types of R&D activities (which are 
usually divided into two types: development and design on the one hand and basic/applied 
research on the other) to affiliates in different host countries based on host country characteristics. 

Therefore, our particular question in this paper is to what extent the regional distribution of 
offshore R&D affects MNEs’ innovation performance. More specifically, we examine whether 
allocating more R&D activities to a country-industry pair with a higher intensity of knowledge 
flows improves the innovation performance of the MNE as a whole. As mentioned above, firms 
are likely to receive more knowledge spillovers in places with abundant R&D resources. We 
expect that MNEs allocating more R&D activities to places where they receive more knowledge 
spillovers are more likely to develop/upgrade their own technological capabilities and become 
more innovative.  

This study is novel in at least two respects. First, we focus on the allocation of offshore R&D 
across host countries and industries within MNEs. Among existing studies, the one that probably 
comes closest to the question we are interested in is a recent study by Yamashita and Yamauchi 
(2019), who, focusing on Japanese manufacturing MNEs, examine the effect of offshore R&D on 
patenting at home, grouping offshore R&D into that in developed and in developing host countries. 
Using the data on patents registered at the Japan Patent Office (JPO), they find that offshore R&D 
in developed host countries increases the quality of patents but does not have any impact on the 
number of patents. Although Yamashita and Yamauchi’s (2019) results suggest that where MNEs 
locate innovative activities is potentially an important determinant of innovation, and especially 
high-quality innovation, they do not examine the allocation of offshore R&D across developed 
and developing host countries within MNEs. 

 
2 For example, Almeida and Phene (2004) focus on patent applications by US semiconductor MNEs’ 
overseas subsidiaries and the characteristics of each subsidiary’s host country. Rahko (2016) does not take 

host country factors into account. Iwasa and Odagiri (2004) focus on Japanese MNEs’ subsidiaries in the 

United States only. These studies do not focus on geographical distribution of R&D across countries within 

MNEs. 
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Second, we measure the relative position within the global knowledge flow network for each 
country-industry pair in the world and use the measure as a proxy for the knowledge flow intensity. 
As knowledge flows occur when an idea generated by somebody is absorbed by others, places 
closer to the center of a knowledge flow network are more likely to accumulate various kinds of 
knowledge learned from others in the network and generate more advanced knowledge which 
others want to learn. Moreover, this study uses international knowledge flows, not intra-country 
knowledge flows, because knowledge flows across countries are expected to be of higher quality 
and more advanced. In addition, we focus on innovation activities by MNEs and expect that 
MNEs want to learn and incorporate world-class technology. Therefore, we use international 
patent citations as a proxy for knowledge flows across countries and industries and construct 
measures for the network of global knowledge flows.3 Previous studies that take the knowledge 
stock of neighboring industries, regions, and/or countries into account often use the weighted 
average of the knowledge stock in a particular industry, region, and/or country using the 
technological or geographical distance or size of trade flows as weights.4 However, we try to 
measure the knowledge flows across countries and industries more directly by using patent 
citation information, not using geographical distance or trade flows. We employ the eigenvector 
centrality of the network of international and inter-industry knowledge flows, which reflects the 
influence of country-industry pairs in the network. The centrality measure reflects not only the 
size of the cumulative knowledge stock in each country-industry pair but also how strongly a 
country-industry pair is connected to other country-industry pairs in the network of global 
knowledge flows.5 

 
3 Many studies use patent citation information as a measure of knowledge flows (see, e.g., Peri, 2005). 
4 Many studies use the intensity or stock of R&D expenditures as a proxy for the local knowledge stock or 
various indicators of human capital and science and technology resources. Other studies estimate the local 

knowledge stock using the cumulative number of patents (e.g., Almeida and Phene, 2004; Iwasa and 

Odagiri, 2004). Meanwhile, Almeida and Phene (2004) also employ a technological diversity index for 

each host country, calculated using patent data. Iwasa and Odagiri (2004) construct a measure of knowledge 

stock of a particular state in the United States by adding its own stock to the geographical-distance-weighted 

average of knowledge stock of all other states. Meanwhile, the seminal empirical study on international 

R&D spillovers by Coe and Helpman (1995) measures the foreign R&D stock as the import-share-weighted 

average of the domestic R&D stock of trade partners. 

5 There is a growing number of studies in the field of economics using network centrality measures as a 
proxy for the strength and diversity of linkages in a network. Such measures have been used to examine, 

for example, the propagation of economic shocks or the dissemination of information across countries, 

industries, and firms (see, e.g., Acemoglu et al., 2016; Carvalho, 2014; Ito et al., 2019; Iino et al., 2021). 
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In this study, we construct a dataset for Japanese manufacturing MNEs for the period 1995–
2011 in which we match data on parent firms, their affiliates, and patents. Using the number of 
patent applications and the quality-adjusted number of applications by these MNEs as a proxy for 
innovation outcomes, we examine whether MNEs allocating more R&D activities to countries 
and industries with higher centrality in the knowledge network tend to show better innovation 

performance.6 
Our findings suggest that allocating more R&D activities to more central countries and 

industries in the knowledge network leads to higher quality innovation as measured by the quality-
adjusted number of patent applications, a proxy for R&D outcomes. However, we do not find any 
significant relationship between the country and industry distribution of offshore R&D and the 
number of patent applications. On the other hand, we find that the size of R&D expenditure tends 
to be positively associated with the number of patent applications but does not have a positive 
relationship with the quality adjusted number of patent applications. Therefore, our results suggest 
that while an increase in MNEs’ R&D expenditure is likely to increase the number of patent 
applications, where they locate R&D is a more important determinant of the quality of innovation 
than the amount of R&D expenditure. 

The remainder of the study is organized as follows. Section 2 describes the dataset used and 
explains our various measures of innovation outcomes and knowledge flows. Section 3 provides 
an overview of recent trends and patterns in the overseas R&D and patenting of Japanese MNEs 
and highlights some notable characteristics. Next, Section 4 presents the empirical model and the 
results. Finally, Section 5 concludes. 
 

 
6 Of course, patents are not perfect to measure innovation outcomes. Not all inventions are patented and 
many of the patents are not used to introduce new products in the market. In the Oslo Manual, which is the 

foremost international source of guidelines for the collection and use of data on innovation activities in 

industry, innovation is defined as a new or improved product or process that differs significantly from the 

unit’s previous products or processes (OECD/Eurostat 2018). Obviously, patents only partially measure 

outcomes of innovation activities, and we should be aware of the limitations of patent statistics. Patents, 

however, are often used as a proxy for innovation in academic studies partly due to the difficulty of 

measuring innovation and to the availability of rich and detailed patent statistics. In fact, the NISTEP 

conducts the National Innovation Survey and investigates the trends of Japanese firms’ innovation activities, 

employing the definition of innovation in the Oslo Manual. Although the information on new or improved 

products or processes collected following the Oslo Manual is very useful, it is still imperfect to measure 

the volume and/or quality of innovation. In any case, it is a difficult and challenging task to measure the 

degree of technological innovation.  
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2. Data 
 
2.1 Firm-Patent-Matched Data 

We start by constructing a dataset of Japanese manufacturing MNEs matching parent firms 
with their affiliates spanning the period from 1995 to 2011. Specifically, we construct a panel 
dataset for parent firms from the “Basic Survey of Japanese Business Structure and Activities 
(BSJBSA).” We then link information on overseas affiliates taken from the “Basic Survey on 

Overseas Business Activities (BSOBA)” to the parent-level panel data. 7  Both surveys are 
conducted annually by the Ministry of Economy, Trade and Industry of Japan. Although both 
surveys cover firms in some non-manufacturing industries, we limit our analysis to MNEs whose 
parent firms are classified into the manufacturing sector, since manufacturing sector firms account 

for the vast majority of patents and firms reporting positive R&D expenditures.8 Further, we focus 
on MNEs that own at least one overseas affiliate and whose Japanese headquarters are classified 
into the manufacturing sector. 

Next, we match patents and patent applicants with the firm-level data on MNEs using the 
names and addresses of parent firms and their overseas affiliates. We take patent data from two 
patent databases. One is the IIP Patent Database compiled by the Institute of Intellectual Property 

 
7 The BSOBA covers the following overseas affiliates: 1) a foreign affiliate in which a Japanese corporation 
has invested capital of 10% or more; 2) a foreign affiliate in which a “subsidiary,” funded more than 50% 

by a Japanese corporation, has invested capital of more than 50%; and 3) a foreign affiliate in which a 

Japanese corporation and a subsidiary funded more than 50% by a Japanese corporation have invested 

capital of more than 50%. Therefore, cases in which joint R&D is conducted through capital tie-ups with 

foreign companies are captured in the survey if the capital participation rate is high to some extent. However, 

we should note that capital tie-ups and/or business partnerships with a low capital participation rate are not 

surveyed and we do not take such types of offshore R&D into account in this study.  

8 Firms may acquire or take a stake in a foreign firm in order to acquire existing technology owned by the 
foreign company, i.e., R&D/knowledge stock of the foreign company. However, such acquisition or capital 

participation is out of scope of this current study. In this study, we focus on newly invested R&D 

expenditure at foreign affiliates after acquisition or establishment of the affiliates, assuming that the size of 

newly invested R&D expenditure will affect the ability to absorb knowledge from overseas. Nevertheless, 

we should note that acquiring or participating in a foreign firm for the purpose of acquiring existing 

technology owned by the firm is becoming more important as a technology strategy, and this is an issue 

that needs further scrutiny in future research.   
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(IIP), which covers all patents filed with the JPO.9 The other is PATSTAT, which is compiled by 
the European Patent Office (EPO) and covers patents filed with all patent offices in the world. 
Although PATSTAT includes patents filed with the JPO as well, patent applicants’ name and 
address are recorded in the Latin alphabet. On the other hand, in the IIP Patent Database, patent 
applicants’ name and address are recorded in Japanese. Moreover, while PATSTAT assigns a 
patent family identification code to each patent, the IIP Patent Database does not provide a patent 
family identification code. Therefore, in order to identify patents filed by Japanese parent firms, 
we match the applicants’ name and address in Japanese in the IIP Patent Database with those in 
the firm-level dataset taken from the BSJSBA, which does not provide firms’ name and address 
in the Latin alphabet. On the other hand, in order to identify patents filed by the overseas affiliates 
of Japanese MNEs, we match patent applicants’ name and address in the Latin alphabet in 
PATSTAT with those in the affiliate-level dataset taken from the BSOBA, which provides 
affiliates’ name and address in the Latin alphabet but not in Japanese. Furthermore, in order to 
identify which patents belong to the same patent family, we link information on patents filed with 
the JPO, which are recorded in the IIP Database, with information recorded in PATSTAT using 
the application number for each patent. 

Utilizing both the IIP Patent Database and PATSTAT, we construct a patent dataset that 
covers almost all the patents filed by the Japanese firms surveyed in the BSJBSA and their 
overseas affiliates surveyed in the BSOBA. However, our patent dataset does not cover patents 
filed by Japanese parent firms with overseas patent offices but not with the JPO, because it is 
difficult to match applicants’ names (in the Latin alphabet) recorded in PATSTAT with the parent 
firms’ names (in Japanese) recorded in the BSJBSA.10  

In addition, Japanese firms sometimes file patents with both the JPO and overseas patent 
offices (international applications). We therefore use patent family information, i.e., the patent 
family identification code, provided in PATSTAT and identify patents filed internationally. Using 
the patent family information, we eliminate duplicate patent filings, i.e., cases where the same 

patent is filed with more than one patent office in multiple countries.11 In other words, we count 

 
9 The IIP Patent Database is available from the IIP website (https://www.iip.or.jp/e/patentdb/index.html). 
For details on the IIP Patent Data, see, e.g., Goto and Motohashi (2007) and Nakamura and the Patent 

Database Steering Committee of the Institute of Intellectual Property (2020). 

10 We assume that such cases are very rare and that most Japanese firms apply for patents with the JPO.  
11 As mentioned already, we use the number of patent applications by each MNE as a proxy for innovation 
outcomes. We aggregate the total number of patent applications to the firm-year level using the first 

application year.   
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the number of patent applications worldwide at the patent-family level by Japanese manufacturing 
MNEs, consisting of applications by both the headquarters and overseas affiliates.12  
 
2.2 Patent quality indices 

While measuring the quality of patents in a rigorous quantitative manner is not easy, 
Squicciarini et al. (2013) propose a variety of indicators to evaluate the quality and characteristics 
of patents. The OECD calculates these quality indicators for each patent application filed with the 
EPO and the United States Patent and Trademark Office (USPTO) and publishes these in the 
OECD Patent Quality Indicators Database. We use the indicators from the OECD Patent Quality 
Indicators Database 2019 and measure the quality-adjusted number of patent applications (at the 
patent family level) for each Japanese manufacturing MNE for each year. The OECD Patent 
Database contains 15 quality indicators, of which we use six. Specifically, the indicators we use 
are: (1) forward citations, (2) generality, (3) originality, (4) radicalness, and two composite quality 
indices, namely (5) a quality index based on four components and (6) one based on six 
components. The forward citation measure is the number of citations received up to 5 years after 
publication. We use forward citations since this is a measure that has been widely used as a proxy 
for patent quality in preceding studies. All the other indicators we use are defined so that they 
take values between 0 and 1. Brief definitions of these six indicators are provided in Appendix B. 
The OECD patent quality indicators are constructed such that a higher indicator value represents 
higher patent quality. 

 One unavoidable limitation is that these indicators are only measured for patents filed with 
the EPO and/or USPTO and are not available for patents filed with the JPO only.13 However, the 
fact that Japanese firms have filed patent applications with the EPO and/or USPTO itself can be 
regarded as an indicator of patent quality, since firms are likely to file patent applications with 
overseas patent offices, particularly the EPO and USPTO, only when they regard an innovation 

as important and of high quality.14 At the patent family level, we can measure the quality of a 

 
12 Appendix Figure 1 provides an illustration of the types of patent applications examined in this study. 
13 According to some OECD researchers, it is difficult to construct rigorous quality indicators for patents 
filed with the JPO because, unlike patents filed with the EPO and USPTO, patents filed with the JPO do 

not have comprehensive inventor citation information. The JPO did not require inventors to report patents 

and other technological information the inventor cited until the early 2000s.  

14  The patents filed with a national/regional patent office or WIPO (World Intellectual Property 
Organization) through the Patent Cooperation Treaty (PCT) route are included in the OECD Patent Quality 

Database in the cases where the patents entered the PCT national phase and were examined by the 
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patent family if at least one of the patents in the same patent family is filed with the EPO USPTO. 
In cases where patents in the same patent family are filed with both the EPO and USPTO, two 
sets of quality indicators are available, i.e., those based on the EPO patent data and those based 
on the USPTO patent data. For such cases, except in the case of forward citations, we use the 
average value of the quality indicators based on the EPO and USPTO data as the quality measure 
for the patent family. For forward citations, we use the sum of citations received based on the 
EPO patent data and the USPTO patent data. 
 
2.3 The centrality index for the network of global knowledge flows  

The key question of this study is whether allocating more offshore R&D activities to central 
areas of the network of global knowledge flows improves innovation performance. For this 
purpose, we need to define the network of global knowledge flows and identify country-industry 
pairs that are central hubs and those that are peripheral in the network. While there are various 
ways to measure knowledge flows, we estimate global knowledge flows using patent citations.15 
We start by taking the citations information for all the patents filed worldwide during the period 
1995–2011 from PATSTAT and compile the citations information at the patent family level. In 
order to exclude low-quality patents, we use only patents that were filed with at least two patent 
offices. Next, by mapping the International Patent Classification (IPC) to the International 
Standard Industrial Classification (ISIC), we classify each patent family into one of the two-digit 
level industries defined in ISIC Revision 4.16 We then calculate the number of patents for each 
country-industry pair for each filing year. In cases where the technology domain of a patent falls 
into more than one IPC subclass and/or a patent application is filed by multiple applicants residing 
in different countries, we use the fractional count of patents, that is, the share of each IPC subclass 
and applicant country. 

In order to measure knowledge flows across industries and countries, we count how many 
citations a patent received from each country-industry pair in each year (forward citations). We 

 
EPO/USPTO. Therefore, in this study, we cover both patents filed with the EPO/USPTO directly by 

Japanese MNEs and patents filed with the EPO/USPTO through the PCT route. 

15 In previous studies, knowledge flows have often been proxied by flows of goods and services using, for 
example, inter-firm transactions, cross-border trade flows, or input-output relationships across industries, 

based on the assumption that knowledge is embodied in goods and services. On the other hand, there are 

also an increasing number of studies that use patent citations to measure knowledge flows more directly 

(e.g., Peri, 2005). 

16 We utilize the concordance table between the IPC subclass codes and the NACE Rev.2 two-digit codes 
provided by Van Looy et al. (2014). 
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count the number of forward citations received up to 5 years after a patent was filed. In the 
PATSTAT database that we use, reliable forward citation information is available up to 2016, so 
that the last year for which we can calculate the knowledge flow network measures is 2011. The 
global knowledge flow network can be constructed for each year with nodes (vertices) 
representing country-industry pairs and edges (branches) representing the number of citations 
between pairs. From the network for each year, we calculate the network centrality for each 
country-industry pair for each year. There are several types of network centrality measures, and 
the measure we use is the eigenvector centrality. Eigenvector centrality is a network index that 
takes into account the weighted sum of direct and indirect connections. That is, eigenvector 
centrality is determined not only based on how many citations own country-industry patents 
receive from other country-industry nodes but also on how many citations the citing country-
industry’s patents receive, i.e., the centrality of citing country-industry pairs is reflected in the 
own country-industry centrality.17 Therefore, country-industry pairs with a high number of direct 
and indirect connections (what we call “hubs”) should have a high network centrality, and we use 
the centrality measure to reflect the relative position of each country-industry pair within the 
global knowledge flow network. In other words, centrality is higher for country-industry pairs 
that are more central in the network.  

It should be noted that for small countries and industries where the number of patent 
applications is relatively small, the network centrality measure tends to fluctuate substantially 
from year to year, which may not necessarily reflect true changes in the relative position in the 
global knowledge flow network. We therefore also calculate the time-invariant centrality for the 
whole period 1995–2011 for each country-industry pair based on all the patent citation 
relationships for the period from 1995 to 2016. In the following analysis, we use both the time-
variant and the time-invariant values of the network centrality indicator to ensure that our results 
are robust. 

 
 

3. Overview of R&D activities and patent applications by Japanese manufacturing MNEs 
 
3.1 Offshore R&D by Japanese manufacturing MNEs 

 
17 While we use the centrality measure calculated without considering the direction of citations among 
country-industry pairs, to ensure the robustness of our results we also calculated the centrality measure 

taking the direction of citations into account. The correlation coefficient between the two centrality 

measures was over 0.9, suggesting that our results would likely remain unchanged if we were to take the 

direction of citations into account. 
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As described above, we construct a firm-patent-matched dataset for Japanese manufacturing 
MNEs, combining three micro-data sources: (1) data on parent firms’ onshore activities, (2) data 
on affiliates’ offshore activities, and (3) information on patent applications to Japanese and 
overseas patent offices by parents and their overseas affiliates. As shown in Table 1, in our dataset, 
the number of overseas affiliates increased from 4,930 in 1995 to 10,666 in 2011, while the 
number of matched parent firms also increased, from 798 in 1995 to 2,190 in 2011. Meanwhile, 
although the total R&D expenditure of overseas affiliates increased 3.3 times from 1995 to 2011 
(column A in Table 1), the offshore R&D share was still very low, showing that Japanese 
manufacturing MNEs’ R&D activities are highly concentrated in parent firms.  
 

INSERT Table 1 
 

Next, Figure 1 shows the regional distribution of the offshore R&D expenditure of Japanese 
manufacturing MNEs. As expected, North America and Europe account for the largest shares, but 
China’s share has grown considerably since the mid-2000s. Nevertheless, in 2011, North America 
and Europe still made up nearly 50% and 30% of total offshore R&D expenditure, respectively.  

While these observations suggest that Japanese manufacturing MNEs’ R&D activities are 
still concentrated at home and in developed countries and that the scale of offshore R&D is very 
limited, offshore R&D expenditure has been growing at a much higher rate than onshore R&D 
expenditure (column B in Table 1 shows that onshore R&D expenditure increased only 1.5 times 
from 1995 to 2011).  
 

INSERT Figure 1 
 
3.2 Knowledge flow network centrality and Japanese MNEs’ offshore R&D 

Next, we look at the levels and changes in the calculated network centrality for each country-
industry pair in the world. Industries in developed countries such as the United States, Japan, 
Germany, and the United Kingdom tend to have a higher centrality, suggesting that these country-
industry pairs are more central country-industry pairs in the global knowledge flow network. 
Moreover, the computer and electronics industry as well as the machinery industry in East Asian 
countries such as Korea, China, and Taiwan, also have a high centrality, suggesting that they are 
also central industries in the global knowledge flow network.18 

 
18 Appendix Figure 2 shows the top 50 country-industry pairs in terms of the time-invariant network 
centrality for the observation period overall. 
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Next, Figure 2 shows the country-industry distribution of Japanese manufacturing MNEs’ 
R&D expenditure and the knowledge flow network centrality for each country-industry pair in 
1995 and 2011. We calculate the share of each country-industry pair in the total offshore R&D 
expenditure by Japanese manufacturing MNEs, and the vertical axis of Figure 2 represents the 
share. Japanese MNEs’ offshore R&D tends to be concentrated in country-industry pairs with a 
high centrality such as the pharmaceutical, computer and electronics, chemical, and machinery 
industries in the United States. However, the R&D share is very low in most country-industry 
pairs even though their centrality is relatively high, suggesting that Japanese MNEs do not allocate 
much R&D activities to many country-industry pairs with a relatively high centrality.  

Looking at changes in centrality from 1995 to 2011, industries such as the electrical 
equipment, transport equipment, computer and electronics, chemical products, and machinery 
industries tend to show a larger increase in centrality, particularly in East Asian countries such as 
Korea, China, and Taiwan.19 Figure 3 shows the relationship between changes in the country-
industry share of R&D expenditure in total R&D expenditure and changes in the knowledge flow 
network centrality of the top 50 country-industry pairs in term of the increase in centrality from 
1995 to 2011. The R&D expenditure share of several country-industry pairs increased 
substantially, such as the transport equipment and computer and electronics industries in China, 
the transport equipment industry in the United States, and the chemical products industry in Korea. 
However, the R&D share of most of country-industry pairs (e.g., the computer and electronics 
industry in India) did not change much and that of some country-industry pairs even decreased 
despite the substantial increase in centrality (e.g., the transport equipment industry in Korea). 
 

INSERT Figures 2 & 3 
 
3.3 Patent Applications by Japanese Firms 

Although many Japanese manufacturing MNEs have been very actively applying for patents, 
their number of patent applications looks to have stagnated or even declined in recent years. 
Specifically, patent applications to the JPO have been declining since the mid-2000s. Moreover, 
since the 2000s, many Japanese firms have disappeared from the list of top patentees at the 
USPTO. Figure 4 confirms this trend. The total number of patent (family-level) applications by 
Japanese firms has been falling since the mid-2000s, although the number of applications to the 
EPO and/or USPTO has remained more or less stable.  

 
19 Appendix Figure 3 shows the top 50 country-industry pairs in terms of changes in network centrality 
from 1995 to 2011. 



 

19 
 

Figure 5 shows the quality-adjusted number of patent applications per firm for Japanese 
manufacturing MNEs. To calculate the figures, we first identify whether a firm applied for one or 
more patents in the same patent family at the EPO or USPTO. As explained in Section 2.1, we 
eliminate duplicate patent filings and count the number of patent applications to the EPO or 
USPTO at the patent family level. Since patent applications to overseas patent offices are often 
regarded to be for patents of high quality, we use the number of patent applications to the EPO 
and USPTO as a measure of the quality-adjusted number of patent applications. We also utilize 
the various patent quality measures taken from the OECD Patent Quality Indicators Database. We 
match the measures with Japanese MNEs’ patents applications to the EPO and USPTO and use 
the firm-year-level sum of each quality measure as the quality-adjusted number of patent 
applications. Looking at the results in Figure 5, most of the measures tend to increase until the 
early 2000s and decline thereafter.20 Specifically, while the number of patent applications to the 
EPO/USPTO per firm starts to decline only in the latter half of the 2000s, and falls only slightly, 
the number of forward citations per firm peaks much earlier, around 2002, and subsequently 
shows a large decline. Such a sharp drop in the forward citations, in fact, has been observed not 
only in Japan but globally. Squicciarini et al. (2013) show that the forward citation index for 
patents filed with the EPO has decreased over time. It should be noted that while there may be 
biases in the patent statistics, controlling for year- and industry-specific effects in the statistical 
analysis should mitigate such biases if their direction is the same for all observations in each year 
and industry. 

In sum, although the various measures of the quality-adjusted number of patent applications 
per firm shown in Figure 5 yield somewhat different results, it seems safe to conclude that the 
quality of Japanese manufacturing MNEs’ patent applications did not improve during the 2000s 
(and most likely deteriorated) despite the increase in offshore R&D activities shown in Table 1 
above. Against this background, in the next section we examine whether offshore R&D improves 
firms’ innovation performance, focusing on the regional and industry allocation of R&D activities 
within MNEs. 
 

INSERT Figures 4 & 5 
 
 
4. Allocation of offshore R&D and innovation by Japanese manufacturing MNEs 
 

 
20 Because the OECD patent quality measures are available only for patent application to the EPO or 
USPTO, the values in Figure 5 are calculated based on patents filed with the EPO or USPTO only. 
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4.1 Empirical model 
To examine the impact of offshore R&D on innovation output, we estimate the knowledge 

production function, which relates a knowledge output measure to input measures. The 
knowledge production function framework has been widely used in the innovation economics 
literature (e.g., Griliches 1990). We mainly use the number of patent applications (at the patent 
family-level) as a measure of Japanese manufacturing MNEs’ innovation output and R&D 

expenditure as a measure of their innovation input.21 We also consider firm size and the size of 
offshore production as firm-level factors which affect innovation output. More importantly, we 
include the average knowledge flow network centrality (KNC) of an MNE’s offshore R&D 
country-industry pairs in order to examine whether the country and industry allocation of offshore 
R&D affects innovation performance. We estimate the following log-linear equation: 
 

ln (1 + 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓) = 𝛽𝛽0 + 𝛽𝛽1 ln�1 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓−1�+𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝐺𝐺𝑜𝑜𝑜𝑜_𝑅𝑅𝑅𝑅_𝑆𝑆ℎ𝐺𝐺𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓−1

+ 𝛽𝛽3 ln�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓−1�+ 𝛽𝛽4𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝐺𝐺𝑜𝑜𝑜𝑜_𝐸𝐸𝐸𝐸𝐸𝐸_𝑆𝑆ℎ𝐺𝐺𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓−1 + 𝛽𝛽5𝐾𝐾𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓−1

+ 𝛿𝛿𝑓𝑓 + 𝜃𝜃𝑓𝑓 + 𝜏𝜏𝑓𝑓 + 𝜀𝜀𝑓𝑓𝑓𝑓𝑓𝑓   

                                                                                                                                            (1)   

where the dependent variable, Yfit, denotes the number of patent applications (at the family-level) 
by multinational firm f in year t. Subscript i represents the industry of firm f’s parent firm. The 
family-level patent applications include all patent applications to the JPO and overseas patent 
offices by an MNE’s parent firm and overseas affiliates. In other words, we are interested in 
Japanese MNEs’ worldwide innovation output, although most patent applications are filed by a 
parent firm or filed jointly by a parent and an affiliate. If both a parent and its affiliates jointly 
apply for a patent, we count this as one patent application. However, when, for example, two 
different MNEs jointly apply for a patent, we do not divide the application between them but 
count this as one patent application by each MNE, i.e., we count two patent applications in total. 

 
21 One concern about using indicators based on patent data as indicators of innovation output is that 
“patentability” may differ across industries. If patenting is an effective tool for appropriating returns on 

innovation only in a limited number of industries, there is a risk that our results are driven by those 

industries. However, as shown in Appendix Table 1, while there are substantial differences across industries 

in the total number of patent applications and the propensity to patent, patenting is not too heavily 

concentrated in a limited number of industries in our sample of Japanese manufacturing MNEs. Therefore, 

patents provide an effective measure of innovation output for the purposes of this study. It should of course 

be noted that firms do not always patent new technologies and that they often use patents as strategic 

instruments. 
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Because there are some firm-year observations in which MNEs did not apply for a patent, we add 
one to the number of patent applications before taking the logarithm. We also employ alternative 
dependent variables, namely, the quality-adjusted number of patent applications (at the family-
level) constructed using the various patent quality indicators. 

As innovation inputs, we include MNEs’ global nominal R&D expenditure, which is defined 
as the sum of the R&D expenditures of the parent and the overseas affiliates of multinational firm 
f. Further, we use MNEs’ offshore R&D share – that is, the share of affiliates’ R&D expenditures 
in the sum of the parent’s and affiliates’ R&D expenditures – to capture the relative size of 
offshore R&D. Since the offshore R&D share cannot be calculated when both the parent and its 
affiliates report zero R&D expenditure, only MNEs conducting R&D activities either onshore, 
offshore, or both are included in the estimation. MNEs’ total number of employees (the sum of 
domestic and offshore employment), Global_Emp, in logarithm is included as a proxy for firm 
size, while the share of overseas affiliates’ employees in the global employment is included as a 
proxy for the relative size of overseas production. 

The variable of interest in equation (1) above is KNC, which captures the country and 
industry allocation of offshore R&D by multinational firm f in year t. The KNC variable is 
constructed as follows. We expect that firms benefit from larger R&D spillovers if they are active 
in R&D in countries and industries which are more central in the knowledge flow network. 
Therefore, for each multinational firm, we calculate the weighted average of the country-industry 
knowledge flow network centrality using the country-industry shares of an MNEs’ offshore R&D 
expenditures as weights. In other words, we assume that MNEs are more likely to gain access to 
and utilize local knowledge when they more actively conduct R&D activities in the location 

through their affiliates.22  
We construct two KNC variables: one based on time-invariant  centrality and one based on 

time-variant centrality. The two KNC variables can be written as follows: 
 

KNC based on the time-invariant centrality measure: 
   𝐾𝐾𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 = ∑ ∑ 𝜑𝜑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾𝐸𝐸𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓∈𝐽𝐽𝑓𝑓𝑓𝑓∈𝐶𝐶𝑓𝑓                                                            (2a) 

 
22 Our knowledge flow network centrality measure should reflect the size/volume of the knowledge 
spillover pool as well as the relative position of a country-industry pair in the knowledge flow network, 

because country-industry pairs with a larger patent stock should receive more citations. Therefore, we 

mainly use the knowledge flow network centrality to construct the KNC variable, although we also use the 

total number of patent applications for each country-industry pair instead of the centrality measure to check 

the robustness of our results. We find that the results are qualitatively the same as those obtained using the 

centrality measure. 
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KNC based on the time-variant centrality measure: 
                                      𝐾𝐾𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓 = ∑ ∑ 𝜑𝜑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐾𝐾𝐾𝐾𝐸𝐸𝐾𝐾𝐾𝐾𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∈𝐽𝐽𝑓𝑓𝑓𝑓∈𝐶𝐶𝑓𝑓                                                 (2b) 

𝜑𝜑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑜𝑜𝑓𝑓𝑓𝑓

∑ ∑ 𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑜𝑜𝑓𝑓𝑓𝑓

𝑓𝑓∈𝐽𝐽𝑓𝑓𝑓𝑓∈𝐶𝐶𝑓𝑓
                                                                                  (2c) 

 
where KCENTcj denotes the time-invariant knowledge network centrality of an affiliate’s (2-digit 
level) industry j in host country c. KCENTcjt denotes the country-industry knowledge flow 
network centrality in year t. φfcjt is the R&D expenditure share of Japanese MNE f’s overseas 
affiliates in industry j in host country c in the total offshore R&D expenditure of MNE f in year t. 
Cf and Jf denote the set of host countries and the set of industries where MNE f has affiliates 
(equation 2c). That is, the first KNC variable is based on the time-invariant centrality calculated 
using all the citation information for the whole period, and changes in this KNC variable capture 
changes in the R&D expenditure shares across affiliates’ country-industry pairs over time 
(equation 2a). The second KNC variable is based on the time-variant centrality, i.e., centrality is 
calculated for every year, and changes in this KNC variable capture both changes in the R&D 
expenditure shares and changes in the centrality of each country-industry pair over time (equation 
2b). In cases where an MNE does not conduct any R&D at its foreign affiliates, the KNC variable 
for this MNE takes a value of zero. The coefficient of interest, β5, in equation (1) captures the 
relationship between the country and industry allocation of offshore R&D and MNEs’ global 
innovation output. If the coefficient has a positive sign, this implies that MNEs’ innovation output 
is positively linked to the amount of R&D expenditure allocated to overseas affiliates in more 
central country-industry nodes of the global knowledge flow network.  

In addition, δf, θi, and τt in equation (1) denote firm-, parent firms’ industry-, and year-
specific fixed effects, respectively. εfit is an error term. All the explanatory variables except the 
fixed effects are lagged one year to reduce concerns about simultaneity between innovation output 
and inputs. For the estimation, we restrict the sample to MNEs with at least one patent application 
in the period from 1995 to 2011.23  
 
4.2 Endogeneity 

While we are interested in the causal relationship from the allocation of offshore R&D to 
innovation outcomes, it is possible that firms with a higher propensity to patent tend to allocate 
R&D activities more to countries and industries that are hubs in the network of global knowledge 
flows. That is, the distribution of offshore R&D may be endogenously determined. To address 
this potential endogeneity, we construct an instrumental variable (IV) using data on the offshore 

 
23 Summary statistics for key variables are provided in Appendix Table 2. 
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R&D expenditure of US MNEs based on the assumption that the geographical distribution of US 
MNEs’ offshore R&D is highly correlated with that of the overseas affiliates of Japanese MNEs 
but that changes in the innovative capabilities of individual Japanese MNEs are not correlated 
with changes in the offshore R&D distribution of US MNEs. The instrument for the knowledge 
centrality variable is constructed as follows: 

                                                       𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝐾𝐾𝑁𝑁𝐶𝐶 = ∑ 𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓
𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓
𝑈𝑈𝑈𝑈𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓∈𝐶𝐶𝑓𝑓                                            (3a) 

                                                          𝜔𝜔𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓
𝑜𝑜𝑓𝑓𝑓𝑓

∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓
𝑜𝑜𝑓𝑓𝑓𝑓

𝑓𝑓∈𝐶𝐶𝑓𝑓
                                                         (3b) 

 
where USRDct denotes the R&D expenditure of US MNEs in host country c in year t. USRDt is 
the sum of the R&D expenditure of US MNEs in all host countries other than Japan. ωfct is the 
employment share of Japanese MNE f in host country c in the total offshore employment of MNE 
f in year t. Cf denotes the set of host countries where MNE f has affiliates. 

The data on the R&D expenditure of US MNEs are taken from statistics compiled based on 
the “Annual Survey of US Direct Investment Abroad” conducted by the Bureau of Economic 
Analysis, US Department of Commerce. For R&D expenditure in the US, we use data on the 
R&D expenditure of US parent firms collected in the same survey.  
 
4.3 Estimation Results 

Table 2 shows the OLS estimation results of equation (1) in Section 4.1 using the number of 

patent applications as the dependent variable. 24  Starting with the coefficient estimates for 
ln(global employment) in Table 2, which represents MNEs’ global employment and proxies for 
firms’ size, the results indicate that innovation output as measured by the number of patent 
applications is strongly and positively correlated with firm size in all specifications. Next, turning 
to MNEs’ R&D expenditure, the results suggest that while innovation output is positively 
correlated with total R&D expenditure (ln(global R&D expenditure)), a larger offshore R&D ratio 
is not associated with more patent applications. Meanwhile, the coefficient for offshore 
employment ratio is negative and significant. These results suggest that MNEs with larger 
overseas operations are not necessarily more innovative though larger MNEs tend to be more 
innovative when innovation outcomes are measured by patent applications. However, we do not 
find any significant relationship between the knowledge network centrality of offshore R&D 
country-industry pairs and the number of patent applications by Japanese MNEs. 

 
24 We also estimated equation (1) using IV estimation and arrived at very similar results but do not show 
them here to save space. 
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INSERT Table 2 

 
Next, we estimate equation (1) using the various measures of the quality-adjusted number of 

patent applications as the dependent variable. We use the same quality-adjusted measures for each 
MNE as those described in Section 3.3. However, we assume that patents filed with the JPO only 
or filed with foreign patent offices other than the EPO/USPTO have “zero” quality and therefore 
count them as zero, since the OECD patent quality measures are available only for patents filed 
with the EPO or USPTO as explained in Section 2.2 

For the estimations using the quality-adjusted number of patent applications as the dependent 
variable, we further restrict the sample to MNEs with at least one patent application to the EPO 
or USPTO in the period from 1995 to 2011. 

Table 3 shows the OLS estimation results of equation (1) using the quality-adjusted number 
of patent applications as the dependent variable. In this table, the number of applications to the 
EPO and/or USPTO or the number of forward citations is employed as the dependent variable. 
Table 4 shows the IV estimation results of the same specification as in Table 3. In the IV 
estimations, we assume that the knowledge flow network centrality variables and the knowledge 
pool variable are endogenous and, as explained, instrument them with the IV described in Section 
4.2. The results of the first stage regression for the IV estimation in Table 4 are shown in Appendix 
Table 3. 

Looking at the results, we find that in Tables 3 and 4, just as in Table 2, innovation output – 
this time measured in terms of quality-adjusted patent applications – is strongly positively 
correlated with MNEs’ size (ln(global employment)) and tends to be negatively correlated with 
offshore employment ratio. However, we do not find a strong positive correlation between MNEs’ 
total R&D expenditure (ln(global R&D expenditure)) or offshore R&D ratio and quality-adjusted 
innovation output, although we do find a weakly positive correlation in the case of the OLS 
regressions in Table 3. In the case of the IV regressions in Table 4, we find that MNEs’ total R&D 
expenditure and offshore R&D ratio tend to be negatively associated with quality-adjusted 
innovation output. 

More importantly, the knowledge flow network centrality variable has a significantly positive 
coefficient in all cases in both tables, suggesting that MNEs allocating more R&D activities to 
more central countries and industries in the global knowledge flow network are more likely to file 
for patents in Europe and/or the United States and are more likely to receive forward citations. 
These results suggest that how MNEs allocate offshore R&D activities across countries and 
industries is more important for achieving high-quality innovation than the amount spent.  
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Next, comparing the size of the coefficients on the centrality variables in Tables 3 and 4 
indicates that the positive impact of network centrality is larger on the number of forward citations 
than on the number of patent applications to the EPO and/or USPTO. This result suggests that 
MNEs that allocate more R&D activities to countries and industries closer to a hub of the global 
knowledge flow network are more likely to invent new technologies that are more frequently cited. 
The knowledge flow network centrality measure we constructed is based on the assumption that 
countries and industries in which more knowledge is exchanged more frequently across borders 
are more central in the global knowledge flow network. Therefore, MNEs are more likely to learn 
from someone else’s ideas by conducting R&D activities in places closer to a hub of the network 
and others are also more likely to learn from the technologies they newly invented. Such a process 
further creates more knowledge flows, promoting knowledge diffusion and spillovers. The 
estimation results in Tables 3 and 4 imply that allocating more R&D to such central countries and 

industries likely contributes to more important innovation outcome.25  
 

INSERT Tables 3 & 4 
 
4.4 Discussion 

The estimation results shown in Tables 2 to 4 suggest that the allocation of offshore R&D 
does matter for high quality innovation. Although the results in Table 2 indicate that an increase 
in R&D expenditure is likely to increase the number of MNEs’ patent applications, the results in 
the other tables show that the sheer amount of R&D expenditure does not have an effect on the 
number of high-quality applications. 

A back-of-the-envelope calculation for the period from 1995 to 2011 shows that, in practice, 
the magnitude of the impact of the allocation of offshore R&D on innovation was very limited. 
Specifically, in our dataset used for the above estimations, the mean value of the time-variant 
knowledge flow network centrality variable for 1995 is 0.12, while that for 2011 is 0.14. Thus, 
the mean value increased by only 0.02 from 1995 to 2011, and the impact of this 0.02 increase on 
the quality-adjusted number of patent applications is quite small. The change in the time-variant 

 
25 We also estimated equation (1) using the remaining indicators measuring the quality-adjusted number 
of patent applications as the dependent variable. The results are shown in Appendix Table 4. We find that 

the coefficients on the knowledge network centrality variable are positive and significant in all of the OLS 

estimations. However, in the IV estimations they are (weakly) significant only when generality or 

originality are used as the quality measure, although the estimated coefficients are positive in all cases. The 

weak IV results may partly reflect the fact that defining and measuring patent quality is not straightforward.  
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knowledge network centrality variable increases the number of applications to the EPO or USPTO 
by only 2.4%, while it increases the number of forward citations by only 4.4%.26  

The limited impact of the allocation of offshore R&D is consistent with the observations in 
Section 3.2 above. As discussed in Section 3.2, the share of country-industry pairs with growing 
centrality in Japanese manufacturing MNEs’ total offshore R&D expenditure did not change 
much in most cases, although some country-industry pairs, such as the computer and electronics 
industry in China, experienced a large increase in both their centrality and their share in Japanese 
MNEs’ total offshore R&D. Thus, changes in the geographic and industry distribution of offshore 
R&D seem to be quite limited on average. While Japanese firms may be cautious about shifting 
R&D activities to Asian emerging economies because of various issues such as intellectual 
property right protections and/or geopolitical issues, our result suggest that Japanese MNEs’ 
innovation efforts might benefit from shifting offshore R&D toward country-industry pairs in 
Asia whose centrality is growing.  

Our knowledge flow network centrality measure shows that the centrality of many industries 
in China, India, Korea, and Taiwan increased substantially from 1995 to 2011.27 According to 
statistics provided by the US Department of Commerce, aggregate R&D expenditure of US 
manufacturing MNEs in these four countries increased from US$82 million in 1995 to US$2,254 
million in 2011, which is a 27.5-fold increase. On the other hand, the corresponding figure for the 
Japanese manufacturing MNEs used in our analysis increased only by a factor of 7.5 (from ¥8.47 
billion in 1995 to ¥60.62 billion yen in 2011).28 Moreover, the share of the four countries in the 
total R&D expenditure of US MNEs’ manufacturing affiliates also increased, from 0.7% in 1995 
to 7.4% in 2011, while the corresponding share for Japanese manufacturing MNEs increased from 
10.0% in 1995 to 16.1% in 2011. Thus, although Japanese manufacturing MNEs as of 1995 had 

 
26 The estimated coefficients on the time-variant knowledge flow network centrality variable in columns 
(2) and (5) in Table 5 are 1.2 and 2.2, respectively. The impact of the increase in the mean of the centrality 

variable by 0.02 on the dependent variable can be calculated as exp (1.2×0.02) =1.024 and exp (2.2×0.02) 

=1.044 in the cases of columns (2) and (5) in Table 5, respectively. 

27 See Appendix Figure 3. 
28 According to US Department of Commerce statistics, R&D expenditure by majority-owned affiliates of 
US MNEs in the manufacturing sector in China rose from US$11 million in 1995 to US$755 million in 

2011, in India from US$4 million to US$574 million, in Korea from US$22 million to US$801 million, 

and in Taiwan from US$45 million to US$124 million. On the other hand, according to our dataset used 

for this study, R&D expenditure by Japanese manufacturing MNEs’ affiliates in China increased from ¥1.35 

billion in 1995 to ¥35.87 billion in 2011, in India from ¥0.05 billion to ¥8.70 billion, in Korea from ¥2.50 

billion to ¥8.18 billion, and in Taiwan from ¥4.57 billion to ¥7.87 billion. 
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already allocated a relatively large share of their offshore R&D to these four Asian countries, US 
MNEs increased their R&D activities in these countries more rapidly in terms of both the absolute 
expenditure amount and the share in total offshore R&D expenditure. 

These figures and the estimation results obtained in this study suggest that Japanese 
manufacturing MNEs potentially should reconsider their allocation of offshore R&D to receive 
more R&D spillovers and create more high-quality innovation.  

  
 
5. Conclusion 
 

While MNEs tend to show better performance than less internationalized firms, not only 
offshore production but also offshore R&D has become an important avenue for MNEs to further 
improve their performance. Over the past decades, Japanese manufacturing MNEs have been 
expanding both their offshore production and R&D activities and have been important players in 
production networks around the world, particularly in Asia. On the other hand, various indicators 
suggest that although Japanese firms remain very active patentees, their number of patent 
applications looks to have stagnated or even declined in recent years.  

Against this background, the question this study sought to address was whether offshore 
R&D promotes innovation. In particular, we were interested in the allocation of offshore R&D 
activities across host countries and industries within MNEs. Specifically, we examined whether 
allocating more R&D activities to a country-industry pair with a higher intensity of knowledge 
flows improves the innovation performance of an MNE as a whole. 

We began our analysis by providing an overview of the offshore R&D activities and 
patenting of Japanese manufacturing MNEs, using a newly constructed firm-patent-matched 
dataset that includes data on MNEs’ overseas affiliates’ R&D expenditure and information on 
patents filed by both parent firms and affiliates with patent offices around the world. Moreover, 
as a proxy for the intensity of knowledge flows, we measured the eigenvector centrality of each 
country-industry pair in the network of global knowledge flows, utilizing information on patent 
citations across countries and industries. We then examined the impact of offshore R&D on 
Japanese manufacturing MNEs’ patent applications.  

We found that the quality-adjusted number of patent applications tends to be higher for 
MNEs that allocate more R&D activities to country-industry pairs that are more central in the 
network of global knowledge flows. However, we did not find any significant link between the 
country and industry distribution of offshore R&D and the number of patent applications. These 
results suggest that the allocation of offshore R&D does matter for high quality innovation. Our 
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results also suggest that MNEs are likely to receive knowledge spillovers through offshore R&D 
in a country-industry pair with a higher knowledge flow network centrality.  

 However, according to the offshore R&D expenditure data we used for this study, the size 
of the impact of the allocation of offshore R&D on innovation performance was quite limited. It 
seems that, on average, Japanese manufacturing MNEs have not sufficiently shifted their offshore 
R&D activities towards countries and industries with growing centrality. Our results suggest that 
Japanese MNEs might benefit from shifting offshore R&D toward some industries whose 
centrality in the global knowledge flow network is growing, even though these industries are in 
emerging economies. Of course, firms may consider various issues such as intellectual property 
right protections and geopolitical risks as well as economic costs and benefits when they make 
decisions on R&D investment in foreign countries. These risks would be greater in emerging 
economies, 

Although it would not be easy for firms to decide the size and distribution of offshore R&D, 
the results of this study suggest that there is room for Japanese manufacturing MNEs to consider 
more optimal arrangements of their offshore R&D to enjoy more R&D spillovers and create 
higher quality innovation. 
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Figure 1. Distribution of Japanese manufacturing MNEs’ R&D expenditure by region 
 

 
Source: The data presented in the figure are compiled by the authors using the micro data underlying the 

“Basic Survey on Overseas Business Activities (BSOBA)” conducted annually by the Ministry of Economy, 

Trade and Industry of Japan. 
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Figure 2. Knowledge flow network centrality and Japanese manufacturing MNEs’ offshore R&D 

 
Source: The R&D expenditure share data presented in the figure are compiled by the authors using the 

micro data underlying the “Basic Survey on Overseas Business Activities (BSOBA)” conducted annually 

by the Ministry of Economy, Trade and Industry of Japan. The industry-country knowledge flow network 

centrality is calculated using the citation information data provided in the PATSTAT. See Section 2.3 for 

details. 
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Figure 3. Changes in knowledge flow network centrality and changes in R&D expenditures share: 
Top 50 country-industry pairs 

 

Source: The R&D expenditure share data presented in the figure are compiled by the authors using the 

micro data underlying the “Basic Survey on Overseas Business Activities (BSOBA)” conducted annually 

by the Ministry of Economy, Trade and Industry of Japan. The industry-country knowledge flow network 

centrality is calculated using the citation information data provided in the PATSTAT. See Section 2.3 for 

details. 
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Figure 4. Number of patent applications by Japanese firms (family level) 

 
Note: The figure shows the sum of applications by Japanese parents (HQ) and their foreign affiliates. 

Source: The data presented in the figure are complied using the firm-patent matched data constructed by 

the authors. For the original data sources, see Section 2.1. 
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Figure 5. Quality-adjusted number of patent applications per firm (mean) 
 

Notes: The figure shows the mean value of the sum of applications by Japanese manufacturing MNEs’ 

parents and foreign affiliates for each year. The mean value is calculated after excluding zero patent 

observations. 

Source: The data presented here are compiled by the authors using the OECD Patent Quality Indicators 

Database 2019 and the firm-patent matched data constructed by the authors. See Sections 2.1 and 2.2 for 

more details. 
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Table 1．Japanese manufacturing MNEs’ onshore and offshore R&D expenditure 
 

Source: The data presented in the table are compiled by the authors using the micro data underlying the 

“Basic Survey on Overseas Business Activities (BSOBA)” and the “Basic Survey of Japanese Business 

Structure and Activities (BSJBSA)” conducted annually by the Ministry of Economy, Trade and Industry 

of Japan.  

 

  

Year

Number of
manufacturing
MNE parent

firms

Number of
overseas
affiliates

Total offshore
R&D

expenditures
(billion yen)

Total domestic
R&D

expenditures
(billion yen)

Offshore R&D
share (%)

(A) (B) A/(A+B)
1995 798 4,930 476 151 6,019 2.5
1996 999 6,296 620 179 6,777 2.6
1997 1,017 6,443 630 229 6,973 3.2
1998 956 6,389 582 256 7,194 3.4
1999 1,033 6,892 698 287 7,054 3.9
2000 1,002 7,715 749 313 7,521 4.0
2001 910 6,738 713 299 7,454 3.9
2002 1,035 7,694 838 375 7,362 4.8
2003 1,178 7,775 879 304 7,532 3.9
2004 1,369 8,623 964 389 8,322 4.5
2005 1,461 8,617 933 258 8,170 3.1
2006 1,537 8,597 1,053 300 9,050 3.2
2007 1,748 9,233 1,125 344 8,843 3.7
2008 1,958 9,831 1,127 348 9,159 3.7
2009 2,129 10,155 1,158 315 7,584 4.0
2010 2,176 10,403 1,164 352 8,248 4.1
2011 2,190 10,666 1,300 495 8,865 5.3

of which:
affiliates with

R&D
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Table 2． Effect of offshore R&D on patent applications (OLS regression results) 

 

Notes: All regressions are based on firm-year observations. Standard errors in parentheses are 
clustered at the firm level. All explanatory variables except year and industry dummies are lagged 
one year. 
* p<0.10, ** p<0.05, *** p<0.01 

  

(1) (2) (3)

ln(global R&D expenditure) 0.0478*** 0.0465*** 0.0465***
(0.015) (0.015) (0.015)

Offshore R&D expenditure ratio 0.0529 0.0360 0.0370
(0.063) (0.065) (0.064)

ln(global employment) 0.517*** 0.516*** 0.516***
(0.067) (0.067) (0.067)

Offshore employment ratio -0.651*** -0.655*** -0.654***
(0.170) (0.170) (0.171)

Knowledge network centrality 0.0274
(time-invariant) (0.038)

Knowledge network centrality 0.0406
(time-variant) (0.053)

Firm fixed effects Yes Yes Yes
Industry (2-digit) fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes

Number of observations 13,922 13,922 13,922
Number of firms 2,213 2,213 2,213
R2 .073 .0731 .0731

Number of patent applications
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Table 3． Effect of offshore R&D on quality-adjusted patent applications (OLS results) 

 

Notes: All regressions are based on firm-year observations. Standard errors in parentheses are 
clustered at the firm level. All explanatory variables except year and industry dummies are lagged 
one year. 
* p<0.10, ** p<0.05, *** p<0.01 
 
  

(1) (2) (3) (4) (5) (6)

ln(global R&D expenditure) 0.0221* 0.0178 0.0177 0.0229 0.0164 0.0163
(0.013) (0.013) (0.013) (0.021) (0.021) (0.020)

Offshore R&D expenditure ratio 0.103* 0.0536 0.0560 0.169* 0.0947 0.0995
(0.060) (0.060) (0.060) (0.103) (0.102) (0.102)

ln(global employment) 0.276*** 0.274*** 0.273*** 0.280*** 0.277*** 0.277***
(0.058) (0.057) (0.057) (0.085) (0.085) (0.085)

Offshore employment ratio -0.229 -0.244* -0.241* -0.148 -0.170 -0.166
(0.146) (0.146) (0.146) (0.224) (0.223) (0.223)

Knowledge network centrality 0.0810** 0.123**
(time-invariant) (0.035) (0.053)

Knowledge network centrality 0.113** 0.168**
(time-variant) (0.046) (0.071)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Industry (2-digit) fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes

Number of observations 11,102 11,102 11,102 11,102 11,102 11,102
Number of firms 1,473 1,473 1,473 1,473 1,473 1,473
R2 .0656 .0667 .0669 .0424 .0433 .0434

EPO/USPTO patent applications Forward citations
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Table 4． Effect of offshore R&D on quality-adjusted patent applications (IV results) 

 

Notes: All regressions are based on firm-year observations. Standard errors in parentheses are 
clustered at the firm level. All explanatory variables except year and industry dummies are lagged 
one year. 
* p<0.10, ** p<0.05, *** p<0.001

(1) (2) (3) (4)

ln(global R&D expenditure) -0.0654 -0.0254 -0.138* -0.0650
(0.045) (0.025) (0.076) (0.040)

Offshore R&D expenditure ratio -0.898* -0.404* -1.658* -0.758*
(0.505) (0.237) (0.865) (0.401)

ln(global employment) 0.238*** 0.253*** 0.202* 0.229***
(0.063) (0.057) (0.103) (0.088)

Offshore employment ratio -0.523** -0.355** -0.684* -0.377
(0.223) (0.163) (0.369) (0.256)

Knowledge network centrality 1.635** 2.980**
(time-invariant) (0.815) (1.400)

Knowledge network centrality 1.217** 2.218**
(time-variant) (0.545) (0.918)

Firm fixed effects Yes Yes Yes Yes
Industry (2-digit) fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Number of observations 10901 10901 10901 10901
Number of firms 1348 1348 1348 1348
Kleibergen-Paap rk LM statistic  8.418***   20.924*** 8.418*** 20.924***
Kleibergen-Paap rk Wald F statistic 8.551 21.929 8.551 21.929

Forward citationsEPO/USPTO patent
applications
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Appendix A: Appendix Figures and Tables 
 
Appendix Figure 1. Patent data included in our dataset for this study 

<Patents included in the analysis>

MNE parent firms covered by the 
"Basic Survey of Japanese Business 
Structure and Activities (BSJBSA)"

Overseas affiliates covered by the 
"Basic Survey on Overseas Business 

Activities (BSOBA)"

Overseas affiliates covered by the 
"Basic Survey on Overseas Business 

Activities (BSOBA)"

Patent family

JPO

Foreign patent offices

Patent family

JPO

Foreign patent offices

Patent family

Foreign patent office A

Foreign patent office B

<Patents not included in the analysis>

MNE parent firms covered by the 
"Basic Survey of Japanese Business 
Structure and Activities (BSJBSA)"

Patent family

Foreign patent office A

Foreign patent office B
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Appendix Figure 2. Top 50 country-industry pairs in the ranking of time-invariant knowledge flow network centrality (1995–2011) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: The data presented in the table are calculated using the citation information data provided in the PATSTAT. See Section 2.3 for details. 
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Appendix Figure 3. Top 50 country-industry pairs in the ranking of knowledge flow network centrality growth from 1995 to 2011 
 

 

Source: The data presented in the table are calculated using the citation information data provided in the PATSTAT. See Section 2.3 for details. 
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Appendix Table 1.   R&D and patenting by industry: 1995–2011 

 

Note: Foreign R&D expenditure share here is defined as the ratio of sum of offshore R&D expenditure by patenting MNEs 

to the total R&D expenditure shown in column (A).   

Source: The authors' calculation based on the firm-patent-matched data compiled by the authors using the micro data 

underlying the “Basic Survey on Overseas Business Activities (BSOBA)” and the “Basic Survey of Japanese Business 

Structure and Activities (BSJBSA)” conducted annually by the Ministry of Economy, Trade and Industry of Japan.  
 
 
 
 
 
 
 
  

Total number of
MNE

observations

Total number of
patenting MNE
observations

Total R&D
expenditure by

patenting MNEs
(billion yen)

Foreign R&D
expenditure
share (%)*

Total number of
patent

applications
(family level)

Propensity to
patent

Industry (A) (B) (B)/(A)
Food & beverages 1,180 908 2,456 8.2 15,820 6.4
Textiles 931 632 1,174 4.3 46,463 39.6
Wood & paper products 727 551 1,105 1.3 79,518 71.9
Coke & refined petroleum 104 91 273 0.2 5,187 19.0
Chemical products 2,161 2,039 9,259 5.2 202,381 21.9
Pharmaceutical products 491 485 10,908 11.2 16,249 1.5
Rubber & plastics 2,417 2,023 3,708 2.6 138,728 37.4
Metal products 2,711 2,138 4,332 2.6 180,285 41.6
Computer & electronics 3,999 3,391 37,918 3.9 1,055,525 27.8
Electrical equipment 1,125 953 6,245 4.8 204,962 32.8
Machinery 3,586 3,144 12,722 1.8 482,844 38.0
Transport equipment 3,254 2,801 39,479 2.4 458,840 11.6
Other manufacturing 810 664 1,334 2.5 43,251 32.4
Total 23,496 19,820 130,914 4.0 2,930,053 22.4
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Appendix Table 2. Summary statistics 

 
 
 
  

Variable Obs Mean Std. Dev. Min Max
ln(1+Number of patent applications), Global 19,820 2.551 2.064 0 9.317
ln(1+EPO/USPTO patent applications), Global 19,820 1.008 1.476 0 7.937
ln(1+Quality-adjusted number of patent applications), Global

weihght: forward citations 19,820 1.576 2.221 0 12.160
weight: generality index 19,820 0.689 1.182 0 6.987
weight: originality index 19,820 0.885 1.358 0 7.589
weight: radicalness index 19,820 0.653 1.118 0 6.998
weight: 4-component quality index 19,820 0.508 0.959 0 6.275
weight: 6-component quality index 19,820 0.550 1.005 0 6.416

ln(1+ global R&D expenditure) 19,820 5.640 2.938 0 13.615
Offshore R&D ratio 17,744 0.057 0.179 0 1
ln(global employment) 19,820 7.111 1.374 3.932 12.226
Offshore employment ratio 19,820 0.362 0.258 0.0002 0.994
Knowledge network centrality (time-invariant) 19,820 0.206 0.354 0 1
Knowledge network centrality (time-variant) 19,820 0.135 0.266 0 1
IV: US MNEs' R&D distribution 19,597 0.169 0.263 0 0.888
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Appendix Table 3. First-stage regression results 

 
 
Notes: Standard errors clustered at the firm level in parentheses. Firm-, year-, and industry-specific fixed effects 
are included. 
* p<0.10, ** p<0.05, *** p<0.01 
 

IV_RD_share 0.110 *** 0.148 *** 1.199 ***
(0.038) (0.032) (0.312)

ln(global R&D expenditure) 0.054 *** 0.039 *** 0.455 ***
(0.005) (0.004) (0.045)

Offshore R&D expenditure ratio 0.614 *** 0.419 *** 4.845 ***
(0.035) (0.029) (0.288)

ln(global employment) 0.028 0.025 0.230
(0.023) (0.017) (0.191)

Offshore employment ratio 0.196 *** 0.125 *** 1.569 ***
(0.059) (0.042) (0.472)

Sanderson-Windmeijer multivariate F test of excluded instruments:
8.55 *** 21.93 *** 14.77 ***

Number of observations 10,901 10,901 10,901
Number of firms 1,348 1,348 1,348

(1) (2) (3)
Knowledge network

centrality (time-
invariant)

Knowledge network
centrality (time-

variant)

Total patent
applications (time-

variant)
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Appendix Table 4． Effect of offshore R&D on quality-adjusted patent applications 

 

Notes: All regressions are based on firm-year observations. Standard errors in parentheses are clustered at the firm level. Firm-, year-, and industry-specific 
fixed effects are included. All explanatory variables except year and industry dummies are lagged one year. 
* p<0.10, ** p<0.05, *** p<0.01 
  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS IV OLS IV OLS IV OLS IV OLS IV

ln(global R&D expenditure) 0.0122 -0.00900 0.0176 -0.0113 0.0191* 0.0114 0.0126 0.00232 0.0127 -0.00208
(0.011) (0.018) (0.012) (0.022) (0.010) (0.019) (0.008) (0.014) (0.008) (0.015)

Offshore R&D expenditure ratio 0.0331 -0.195 0.0495 -0.264 0.0290 -0.0615 0.0302 -0.0822 0.0248 -0.136
(0.046) (0.179) (0.055) (0.211) (0.047) (0.182) (0.035) (0.139) (0.036) (0.144)

ln(global employment) 0.181*** 0.170*** 0.242*** 0.229*** 0.213*** 0.212*** 0.144*** 0.139*** 0.151*** 0.144***
(0.046) (0.046) (0.053) (0.053) (0.048) (0.048) (0.038) (0.038) (0.040) (0.039)

Offshore employment ratio -0.144 -0.195 -0.197 -0.271* -0.192* -0.211* -0.153 -0.178* -0.140 -0.176*
(0.116) (0.124) (0.134) (0.146) (0.117) (0.125) (0.094) (0.100) (0.097) (0.104)

Knowledge network centrality 0.122*** 0.672* 0.113*** 0.865* 0.114*** 0.337 0.0897*** 0.361 0.0915*** 0.477
(time-variant) (0.038) (0.408) (0.044) (0.484) (0.040) (0.416) (0.032) (0.321) (0.033) (0.332)

Number of observations 11,102 10,901 11,102 10,901 11,102 10,901 11,102 10,901 11,102 10,901
Number of firms 1,473 1,348 1,473 1,348 1,473 1,348 1,473 1,348 1,473 1,348

Generality Originality Radicalness 4-component index 6-component index
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Appendix B: Definition of the OECD Patent Quality Indicators used in This Study 
 
All the OECD quality indicators are constructed such that a higher indicator value represents 
higher patent quality. The six indicators used in this study are: 
 
1. Forward citations: The number of citations a given patent receives over a period of 5 years 
after the publication date. 
 
2. Generality: The index tries to capture general purpose technologies. The patent generality 
index is constructed based on information concerning the number and distribution of citations 
received (forward citations) and the technology classes (IPC) of the patents these citations come 
from. Patents cited by subsequent patents from a wide range of technology fields are considered 
to be based on more general-purpose technologies. 
 
3. Originality: Patent originality refers to the breadth of the technology fields on which a patent 
relies, based on the assumption that inventions relying on a large number of diverse knowledge 
sources are more original. The index is constructed based on information concerning the number 
and distribution of the patents cited (backward citations) and the technology classes (IPC) of the 
cited patents.  
 
4. Radicalness: The radicalness of a patent is measured as the time invariant count of the number 
of IPC technology classes in which the patents cited by the given patent are, but in which the 
patent itself is not classified. Therefore, the more a patent cites previous patents in classes other 
than the ones it is in, the more the invention is considered radical. 
 
5. Quality Index (4): A composite index constructed from the following four components: 
number of forward citations (up to 5 years after publication), patent family size, number of claims, 
and the patent generality index. Available only for granted patents. 
 
6. Quality Index (6): A composite index constructed from six components, consisting of the same 
four components as the Quality Index (4) plus the number of backward citations and the grant 
lag index. Available only for granted patents. 
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