
52

S C I E N C E & T E C H N O L O G Y T R E N D S

Introduction

 Computer performance has been improved by
increase of CPU (central processing unit) clock
frequency based on miniaturization of semiconductor
manufacturing process, however this reaches the
upper limit caused by increase of heat generation,
power consumption and leakage current since around
2005. To overcome these problems, in recent years,
improvement of computer performance by parallel
processing using multi-core processors which have
multiple cores executing general operations at lower
clock frequency has become a central issue.[8] Since
the year 2000, various processors have come on the
market, for example multi-core CPUs, GPU (Graphics
Processing Units) which enable fast numerical
computations, and heterogeneous processors which
combine an ordinary core for general oprerations
with special cores for numerical operations. While
such high performance processors based on parallel
computing have come, ironically, development of
numerical simulation software with high execution
efficiency has been extremely difficult.
 In order to make full use of parallel hardware, we
must select suitable calculation algorithms for the
hardware architecture, and adjust programs to raise
execution efficiency. This is called software tuning,
which is an essential element for software development
in high performance computing. There are technical
difficulties as well as tremendous work in manual
software tuning for extremely complicated hardware
architecture in recent years. Furthermore, developed
software must be rewritten and tuned in accordance
with frequently updated hardware architecture to keep

4

Trend of Software R&D for Numerical Simulation
— Hardware for parallel and distributed computing

and software automatic tuning —
Takao Furukawa
Promoted Fields Unit

Minoru Nomura
Information and Communications Unit

1

2

existing software resources. This increases software
maintenance costs. It is a serious obstacle of efficient
progress of R&D in numerical simulation to update
software for the latest hardware architecture.
 This paper first describes trends in hardware
architecture and software applications, next provides
an overview of layer structure in parallel and
distributed software for high performance numerical
simulation. We then discuss automatic tuning, which
plays an important role to develop software for
high performance computing. Finally, we introduce
new trends in research organizations promoting
fundamental software technology.

Trends in Hardware Architecture
and Software Applications

2-1 Diversifying Commodity Processors and their
Trends

 Commodity processors (also called microprocessors,
MPUs) are mass produced low cost processors for
PCs, servers and game consoles. In recent years, high
performance computers for simulation in science and
technology are also increasingly adopting parallel and
distributed systems using commodity processors.
 Figure 1(a) to (d) show typical architectures of
commodity processors. (a) Single core CPU and (b)
Multi-core CPU designed for general operations that
have a large instruction set enabling complicated
processing is comprised of a core1 processing unit
with memory storing data. For example, it has
acceleration functions such as a special instruction
for sequential data multiplication and out of order
execution which invokes independent processes for
fast overall processing. The bottom half of Figure

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

53

1 shows (c) GPU and (d) Cell/B.E. (Broadband
Engine)TM, which are mainly composed of core2
(processing units designed for specific numerical
operations). Initially, (c) GPU and (d) Cell/B.E. were
developed with the goal of reducing CPU load by
isolating numerical operations: dot and cross products
which are widely used in 3D computer graphics,
and audio and visual data processing that handles
compressed data encoding and decoding. In recent
years, numerical simulations using (c) GPU and (d)
Cell/B.E. as cores[NOTE 1] have been popular in which
their high performance is widely noticed.
 Cell/B.E.[NOTE 2] in Figure 1(d), which is one type
of heterogeneous processor, gives the following
improvements compared to conventional CPUs.[9, 28]

● Improved data transfer efficiency in processor
 From the aspect of enhancing processing speed,
there are bottlenecks in the time required for reading
or writing data in memory, and data transfer time
among cores. In order to achieve high speed data
transfer, it uses dual high speed ring networks

connecting each core2 for fast numerical operations.

● Efficient processing and power savings using a
general processing core and numerical operation
cores
 The combination with core1 and core2 improves
execution efficiency and reduces power consumption
by allotting operations according to their content. A
core1 executes general operations and multiple core2s
mainly execute numerical operations. The larger
number of transistors in a CPU not only increases
power consumption, but also increases the power
used in chip cooling. Thus instead of increasing the
number of core1 which executes various complicated
processing, increasing the number of core2 which
executes numerical operations, thereby reduces the
total number of transistors on the chip.
 Figure 2 shows changes in hardware architectures
and their relationships with high performance
software development. A CPU which controls
operation processing as the heart of a computer has
been realized with a single core for a long time. Then

1

M ltif ti f
Memory Memory

Specialized for

Multifunction for
general purpose

processing Core1 Core1

(b) Multi-core CPU

Core1 Core1 Core1

(a) Single core CPUSpecialized for
numerical
operation
processing

(b) Multi core CPU

Memory

(a) Single core CPU

Memory

Core1

Core2 Core2 Core2 Core2Core2

Core2

Core2

Core2

Core2

Core2

Core2

Core2

Core2

Core2

Core2

Core2

One type of
heterogeneous

processor

Core2

(c) GPU

Core1

(d) Cell/B.E.

Core2 Core2 Core2
Core2 Core2 Core2 Core2

Prepared by the STFC based on Reference[9,20,26]

Figure 1 : Architectures of Commodity Processors

[NOTE 1]
Floating point data used in GPUs were extended from single precision to double precision, and were
also compatible with the IEEE754 floating point operation standard. Consequently it makes easier to use
GPUs in numerical simulations which require calculation precision.
[NOTE 2]
IBM’s PowerXCellTM is a product which accelerated the double precision floating point operations of
Cell/B.E.

54

S C I E N C E & T E C H N O L O G Y T R E N D S

multi-core CPUs appeared in the market. Furthemore,
various architectures which use GPUs and multi-core
CPUs together came to be adopted. Heterogeneous
processors comprises of different cores on one chip.
There is a steady move towards heterogeneous parallel
and distributed systems which mix these architectures.

This trend that the various hardware architectures
mentioned above are combined will continue.
 Heterogeneous processors would be widely used
from the trend appeared in IBM’s Cell/B.E.TM,
AMD’s StreamComputing,[21] and Intel’s Larrabee.[23]
However, data transfer between CPU-GPU tends to be

Prepared by the STFC based on Reference[9,20,26]

Figure 2 : Hardware Architecture Changes and Increasing Difficulty of Software Development for
High Performance Computing

Prepared by the STFC based on Reference[11-16]

Figure 3 : Changes in Numerical Simulation Software and Hardware

2

Heterogeneous processor
Heterogeneous parallel & distributed system

(multi-core CPUs + heterogeneous processors)

GPU

Multi-core CPU

Heterogeneous parallel & distributed system
(multi-core CPU + GPU)

Increasing difficulty of software development for high performance computing

Single core CPU Multi-core CPU Parallel & distributed system

3

Numerical

LS-DYNA (For structural analysis)

Basically,
numerical
i l ti ft

Amber (For computational chemistry)

ABAQUS (For structural analysis)

ANSYS (For structural analysis, thermo-fluid and electromagnetic field
analysis)

Simulation
Software Gaussian (For computational chemistry)

NASTRAN (For structural analysis)

simulation software
has a long life

(y)

PC cluster

Parallel systems by
commodity processors

Heterogeneous
parallel system Large scale

parallelization

Changes in

Application of
single instruction
to multiple data

Single core CPU

Multi-core CPU

GPU

Heterogeneous processor

Commodity
processors

Parallelization
in processor

Changes in
hardware

1960 1970 1980 1990 2000 2010 2020

Single core CPU

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

55

a bottleneck in current architectures. In the short term,
a part of numerical simulations by heterogeneous
parallel and distributed systems, which combine CPUs
and fast numerical calculation GPUs, or heterogeneous
processors, are cost effective compared to the cases
of homogenous parallel and distributed systems
constructed by the identical CPUs.
 Software development targetting a heterogeneous
parallel and distributed system for high performance
computing is extremely difficult compared with usual
development targeting a single core CPU. In a parallel
and distributed system, execution efficiency is more
affected by processes such as data allocation and
integration among processors, and data transfer, etc.
Thus these factors must be considerd in the software
development for high performance computing.
Especially for parallel and distributed systems using
heterogeneous processors which combine different
functions, it makes the software development even
more difficult to get sufficient performance, because
each core’s process must efficiently work in closer
cooperation.

2-2 Lifetimes of Numerical Simulation Software
 Numerical simulation software tends to have a
longer lifetime than for hardware. Figure 3 shows
changes in typical numerical simulation software and
hardware, especially commodity processors. There
is leading numerical simulation software used even
today with about 40 years of history. On the other

hand, commodity processor architecture has been
frequently changed in a short period of time (this is
referred to here as a short lifetime for hardware). In
order to extend the lifetime of numerical simulation
software, in other words, in order to continue using
the same software even on hardware with a changed
architecture, software must be rewritten each time
to suit the novel hardware. For example, leading
numerical simulation softwares for structural analysis
and computational chemistry appeared in the late
1960s, and these have been used to the present time
with function extensions.

2-3 Execution efficiency of Numerical Simulation
Software in Parallel and Distributed Systems

 In general, numerical simulation software
results very low execution efficiency in parallel
and distributed systems. Execution efficiency is
the sustained performance as a ratio of theoretical
performance as 100%. Figure 4 shows the relationship
between numerical simulation software and its
execution efficiency reported by Oliker et.al.[5] The
evaluation covered the simulations shown below
which were selected from various science and
technology fields. The names of numerical simulation
software used to investigate execution efficiency are
written in parentheses.
•Linear equation system with a dense coefficient

matrix (LINPACK)
•Ab initio calculation (PARATEC)

Prepared by the STFC based on Reference[5]

Figure 4 : Execution efficiency of Numerical Simulation Software in a Parallel and Distributed
System (Results of calculation by a parallel and distributed system using 512 AMD
Opteron processors)

0 10 20 30 40 50 60 70 80 90 100

Linear equation system with a
dense coefficient matrix

(LINPACK)

Ab initio calculation (PARATEC)

Fluid dynamics (ELBM3D)

Execution efficiency %

Plasma fusion (GTC)

High energy physics
(BeamBeam3D)

Gas dynamics (HyperCLaw)

56

S C I E N C E & T E C H N O L O G Y T R E N D S

•Fluid dynamics (ELBM3D)
•Plasma fusion (GTC)
•High energy physics (BeamBeam3D)
•Gas dynamics (HyperCFlow)
 The execution efficiencies shown in Figure 4 are
obtained in a parallel and distributed system using
512 AMD Opteron processors. Execution efficiency
was over 70% for LINPACK, a benchmark program
used for comparing high performance computers.
However, we recognize from Figure 4 except for
PARATEC,[NOTE 3] numerical simulation software has
less than 25% execution efficiency. Even if parallel
processing is introduced, numerical simulation
software results low execution efficiency. If the
software is developed for sequential processing,
source codes which can not be parallelized remain
for the sake of dependency of processes. While
parallelization is applicable, data transfer delay
and load balance among processors make it even
more difficult to improve execution efficiency in a
parallel and distributed system. Therefore progress in
numerical simulation software does not sufficiently
catch up with hardware performance improvements.

Components of Numer ica l
S i m u l a t i o n a n d S o f t w a r e
Fundamental Technology

 Numerical simulation is divided into many
components, and these are arranged in the five layers
shown in Figure 5: Theory, mathematical model,
algorithms, software, hardware.[17]

 On the left side of Figure 5 shows usual components,
and on the right are new components which should be
considered. Here, software fundamental technology is
a set of common components classified in the software
layer which are used in various numerical simulations,
such as functions linking with hardware.
 As shown on the left side under “Usual Components

in Numerical Simulation”, various components
at each layer must be considered for developing
numerical simulation software. In the case of software
for sequential processing, there was no need to
make a program enabling complicated parallel and
distributed processing. However, if there is a need
for numerical simulation software which runs on a
parallel and distributed system, mathematical models
and theories as well as algorithms should be designed
in consideration of hardware architecture. In the
past software development, each layer was relatively
independent, but with progress in the use of parallel
and distributed systems, each layer has been closely
related.
 On the right side of the figure, some “New
Components for Software and Hardware which
Should be Considered” in the hardware layer
contains GPUs, heterogeneous processors, and the
heterogeneous parallel distributed systems which
use these processors. In the software layer, there are
Software Development Kits (SDKs) for above parallel
processors such as CUDA,[20] MARS,[24] and the
standard OpenCL.[25][NOTE 4] Moreover, combination
of MPI/OpenMP, and grid computing middleware
are added to parallel and distributed processing
frameworks as new components.
 These components should be considered in software
development for high performance numerical
simulation to make full use of novel hardware.
Due to this situation, software automatic tuning
related technology plays more important roles as a
fundamental technology in software development for
high performance computing. These are discussed in
detail below.

[NOTE 3]
PARATEC shows an exceptionally high execution efficiency of about 55%, because Fast Fourier
Transform (FFT) accounts for the majority of the calculations which can be accelerated by parallel
processing.
[NOTE 4]
Specification for an Application Program Interface (API) created by the Khronos Group, which can
provide integrated handling of multi-core CPUs, GPUs and Cell/B.E. However, with OpenCL 1.0,we
must write specific programs for each architecture to enahance performace.

3

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

57

Software Automatic Tuning

4-1 Software automatic tuning in Numerical
Simulation

 Software tuning is a process to adjust software in
order to make full use of hardware performance.
Software automatic tuning in numerical simulation
automatically improves execution efficiency without
time-consuming manual tuning by adjusting software
to suit hardware.
 Figure 6 explains an outline of software automatic
tuning with an example. Let’s consider the case of
solving the fundamental equation described by a
partial differential equation using the finite element
method. In this numerical simulation, the linear
equation system is solved. Here, the items shown in
the bottom of Figure 6 represent factors affecting
calculation speed and calculation accuracy, which
are called tuning conditions. Tuning conditions are
divided into simulation models, numerical properties
of linear equations, solution algorithms, quality of
calculation program, and the computer system. These
factors are subdivided into several factors which
further affect each condition. Arrowed lines shown in
the figure denote the subdivided factors.
 A basic software automatic tuning process consists
of the following 5 processes.

(1) Experiment: Set tuning conditions and execute the
software

(2) Measurement: Obtain measurement items from
experimental results, and calculate the evaluation
function

(3) Analysis: Estimate the performance model from
the measurement items and evaluation function

(4) Learnning: Automatically update the tuning
conditions

(5) Decision: Determine optimal tuning conditions
 This process improves performance while
repeating steps (1) to (4) with changing the tuning
conditions, then finally obtains the optimal tuning
conditions in step (5). Among these tuning conditions,
some items can be automatically determined by
usual compiler optimization technology. But the
compiler optimization technology can not handle
algorithm selection, parameter adjustment and so
on. Consequently, we define an evaluation function
reflecting calculation speed of numerical simulation,
then solving optimization problems, automatic tuning
is achived which selects optimal algorithms and
adjusts parameters.
 Next, we explain the effects of software tuning and
the necessity of automatic tuning, taking the example
of a size 400x400 matrix multiplication computation.
The histogram in Figure 7 shows the distribution of
calculation speed obtained from all 16,129 tuning

Prepared by the STFC based on Reference[9,17-25]

Figure 5 : Components of Numerical Simulation

4

5

Usual Elements Comprising Numerical Simulation New Components for Software & Hardware which
Should be Considered

Theory Subatomic particles / space / earth, energy, weather &
climate, structural & thermo-fluid dynamics /
electromagnetism, materials, chemistry & biochemistry &
medicine, medical science, financial engineering

General purpose parallel programming languages

Software & hardware fundamental
technologies requiring R&D

Mathematical
model

Algorithm

Quantum, molecular orbital method, molecular dynamics,
finite element method / boundary element method /
particle method, difference method

Dense matrix & sparse matrix linear equations,
eigenvalue problem FFT Monte Carlo method

Software automatic tuning integrated development
environment
Software automatic tuning language function extensions
Automatic tuning numerical calculation libraries

s
Software

eigenvalue problem, FFT, Monte Carlo method,
computer algebra system
Integrated development environments
Programming languages (FORTRAN, HPF, C, C++, etc.)
Software tuning
Parallel numerical calculation libraries

Parallel & distributed processing framework
(Joint use of OpenMP/MPI. Grid computing middleware.)

SDKs for parallel processors
OpenCL
C S S

Hardware

a a e u e ca ca cu at o b a es
Parallel & distributed processing framework
(OpenMP & MPI)

Parallel computing systems
(Loosely coupled systems & tightly coupled systems)
P

CUDA, Stream, MARS

Parallel computing systems
Heterogeneous parallel systems

S i l h tProcessors
(Single core CPU & multi-core CPU)

Special purpose processors, heterogeneous processors
GPU, Cell/BE, Larrabee

58

S C I E N C E & T E C H N O L O G Y T R E N D S

conditions in a 400×400 matrix multiplication, in
which the number of results with the same calculation
speed is counted. In this case, the highest calculation
speed is 1459 MFLOPS, and there are peaks at 1300,
1175 and 1100 MFLOPS in the histogram whose
height indicates the number of tuning conditions with
the same speed. This suggests that the optimal solution
is not easily obtained, even if we define the evaluation
function using calculation speed. Tuning conditions
greatly vary the calculation speed, therefore there is
a small peak near 600 MFLOPS, which is under half
of the maximum calculation speed. We can obtain the
optimal solution if we investigate the whole search
space, but this results in large tuning calculation
cost. Consequently, we need an automatic tuning
method which efficiently finds conditions maximizing
performance from a huge number of tuning condition
candidates.
 Software automatic tuning can be divided into
the functions of static automatic tuning, dynamic
automatic tuning, and advanced automatic tuning.
These functions are used to create numerical
calculation libraries and applications with automatic
tuning functions. In developing automatic tuning
functions, different development environments

such as an integrated automatic tuning development
environment, language extension etc. are required.
Figure 8 shows these relationships.
 According to the history of automatic tuning
research and development, software automatic tuning
was first applied to the parts of numerical calculation
libraries depending on hardware. This is now called
static automatic tuning. Next, optimization considering
property of input data was applied to numerical
calculation. This is now called dynamic automatic
tuning. Dynamic automatic tuning investigates the
matrix size and distribution of nonzero elements, then
automatically determines suitable tuning conditions
in addition to the static tuning functions. In order to
implement these dynamic automatic tuning functions,
it was necessary to extend the specifications of the
programming language (programming language
extension) to a development environment. In order
to archieve advanced automatic tuning, numerical
optimization techniques and databases has been used,
and the research is now in progress on constructing
integrated development environments for automatic
tuning software which includes verification of
performance improvement. However, the scope of
application is still limited to numerical calculation

[NOTE 5]
In linear equation systems and eigenvalue problems, sometimes it does not give numerical solution
in which iteration depends on the initial parameters and algorithms. Even in these cases, a numerical
calculation library with automatic tuning functions is useful, because initial values and parameters are
automatically adjusted.

Prepared by the STFC based on References[30-33]

Figure 6 : Outline of Software Automatic Tuning

Experiment Set tuning conditions &
Software auto-tuning Effects

• Efficient software
d l t f hi h

Background
• Compiler optimization is

insufficient Experiment execute software

Medsurement
Obtain measurement items
from experiment results,
calculate evaluation function

Learning

A t ti ll d t i

development for high
performance computing

• Automation of tuning
optimized for hardware

insufficient
• Manual tuning is high cost,

not widely applicable

Analysis
Estimate the performance
model from measurement
items & evaluation function

Decision
Determine optimal tuning
conditions

Automatically
update tuning
conditions

Automatically determine
vast number of tuning
conditions

=

Items which should be considered as tuning conditions

conditions

Processor architecture

Simulation model

Expression of
physical model Discrete approximation

precision

Solution algorithm

Settings parameters

Algorithm combination

Computer system

Data transfer
efficiency

precision

Properties of
coefficient matrix

Impacts of right-hand
side items Software quality

Significant figures

Linear equation
calculation time
& precision

Numerical properties of linear equation Quality of calculation program

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

59

libraries, and there are expectations for progress in
automatic tuning research which is also applicable
to numerical simulations in addition to matrix
calculations and signal processing.

4-2 Numerical Calculation Libraries with Automatic
Tuning Functions

 Numerical simulations frequently use numerical
calculation libraries for matrix calculations and
signal processing. Operations executed by these
numerical calculation libraries often cause bottlenecks
decreasing performance. By incorporating automatic
tuning functions into numerical calculation libraries
for linear equation systems, eigenvalue problems, FFT,
etc., the performance of numerical simulations can be
improved.
 Numerical calculation libraries with automatic
tuning functions are also classified into numerical
calculation libraries with static automatic tuning

functions depending on hardware, and numerical
calculation libraries with dynamic automatic tuning
functions depending on input data. Characteristics of
tuning techniques used in these numerical calculation
libraries with automatic tuning functions are shown
below.[NOTE 5]

(a) Numerical calculation library with static automatic
tuning functions

• During installation, it evaluates the hardware
configuration and performance such as the numbers
of processor cores and data transfer rate, then
adjust the parameters used in libraries to maximize
performance.

(b) Numerical calculation library with dynamic
automatic tuning functions

• According to the matrix size and distribution of
nonzero elements in a sparse matrix, it selects the
algorithms and calculation parameters for linear
equation systems and eigenvalue problems.

Figure 7 : Relation between Automatic Tuning Conditions and Matrix Calculation Speeds
Prepared by the STFC based on References[40]

Figure 8 : Software Types and Software Automatic Tuning Functions
Prepared by the STFC based on References[30-33, 40, 42]

7

250
Boost speed by tuning Even with different tuning conditions

200

on
di

tio
ns

pe
ed

Boost speed by tuning Even with different tuning conditions,
often becomes same speed

No. of tuning conditions
16,129

100

150
f t

un
in

g
co

ul
t s

am
e

sp
Automatically seek
optimal
combination from a
h b f

50

eq
ue

nc
y

o
th

at
 re

s u Higher efficiency
by automatic

tuning

huge number of
tuning conditions

400 600 800 1000 1200 1400 1600
Speed (Mflops)

Fr
e

0
Software

automatic tuning

Speed (Mflops)
1459 MFLOPS (max speed)1/2 of max speed

Numerical simulation program
ith t ti t i f ti

Automatic tuning

Numerical calculation libraries
with automatic tuning functions

with automatic tuning functions

Automatic tuning
integrated

development
environment

Advanced automatic tuning
(Use numerical optimization

techniques & database)

D i t ti t i
Automatic tuning

Type of software Development
environment of

t ti t i
Automatic tuning

programming
language extension

Dynamic automatic tuning
(input data dependent)

Static automatic tuning
(hardware dependent)

g
functions automatic tuning

functions

(hardware dependent)

60

S C I E N C E & T E C H N O L O G Y T R E N D S
9

FFTW
SPIRAL

Signal processing

R h T i

OSKISparse & dense matrix
operations

Parallel processing Xabclib

Research Topics
• Enhance performance

by improved
optimization techniques

OSKI-PETSc

ATLAS

ILIB
ABCLib

Dense matrix

p g
Dynamic optimization

p q
• Handling new hardware

architectures

PHiPAC
ATLASDense matrix

operation
Static optimization

1990 1995 2000 2005 2010 2015 2020

Name Type Organization Functions

PHiPAC
(Portable High
Performance ANSI C)

Dense matrix
calculation

University of
California, Berkeley,
United States

Library automatically accelerating a matrix multiplication loop
by adjusting to the hardware architecture. The code generator
outputs multiple source codes which implement different tuning
conditions, then the fastest codes are automatically selected.
Specifically, it improves memory access efficiency by using
cache that introduces local variables. Moreover it improves
execution efficiency by parallelization for independent codes
using loop unlooling and elimination of conditional branches.

ATLAS
(Automatically Tuned
Linear Algebra
Software)

Dense matrix
calculation

University of
Tennessee,
United States

Matr ix calculat ion l ibrar y inc luding automat ic tuning
functions that supports parts of BLAS (Basic Linear Algebra
Subprograms) and LAPACK (Linear Algebra PACKage). It
generates multiple programs with different block sizes which
affects matrix calculation performance to adjust hardware.
During library installation, it uses a timer to measure execution
time and select an optimized program.

FFTW
(the Fastest Fourier
Transform in the West)

Signal
processing

Massachusetts
Institute of
Technology,
United States

High speed Fourier transform library including automatic
tuning functions which reduces memory access frequency
and amount of calculations. In addition to the automatic tuning
during installation, it executes run-time optimization based on
the input data size. The parallelized library using MPI and Cell
B.E. implementation have been developed so far.

SPIRAL
(Software/Hardware
Generation for DSP
Algorithms)

Signal
processing

Carnegie Mellon
University,
United States

Library containing automatic tuning functions for signal
processing, such as FFT, DCT and Wavelet transforms.

OSKI
(Optimized Sparse
Kernel Interface)

Sparse
matrix
calculation

University of
California, Berkeley
Lawrence Livermore
National Laboratory,
United States

Automatic tuning library for sparse matrices developed by the
BeBOP (Berkeley Benchmarking and Optimization Group).
This can also handle parallel processing in combination with
the PETSc numerical calculation library using MPI and BLAS.

ILIB
(Intelligent LIBrary)

Dense and
sparse matrix
calculation

University of Tokyo

Library for linear equation systems and eigenvalue problems
using parallel algorithms. It selects a suitable algorithm based
on the distribution of nonzero elements. It can be applied for
both sparse and dense coefficient matrices.

ABCLib
(Automatically
Blocking and
Communication-
adjustment Library)

Dense and
sparse matrix
calculation

University of Electro-
Communications

Numerical calculation library for parallel distributed systems.
It implements automatic blocking which corresponds to cache
size parameter tuning, and dynamic selection for optimal
communication reflecting the input data.

Xabclib
(eXtended ABCLib)

Dense and
sparse matrix
calculation

University of Tokyo

Parallel automatic tuning library that extends ABCLib using
OpenATLib. It suppor ts eigenvalue problems using the
LANCZOS method, and linear equation systems using the
GMRES method.

Table 1 : Numerical Calculation Libraries with Automatic Tuning Functions for which R&D is in progress

Prepared by the STFC based on References[32, 33, 38, 39, 43]

Figure 9 : Trends in Development of Numerical Calculation Libraries with Automatic Tuning Functions
Prepared by the STFC based on References[32, 33, 38, 39, 43]

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

61

• Applies tuning techniques corresponding to
dynamically allocated processors and number of
cores.

 Figure 9 shows the history of developments of
these numerical calculation libraries with automatic
tuning functions, and predicted future developments.
PHiPAC and ATLAS are libraries which implement
static optimization for dense matrix calculations. The
following are numerical calculation libraries with
dynamic automatic tuning functions for parallel and
distributed systems: FFTW and SPIRAL for signal
processing, and OSKI, ILIB, ABCLib and Xabclib
for matrix calculations. ILIB had been extended
to ABCLib, and moreover its numerical algorithm
selection during run-time and communications
methods tuning were improved in Xabclib.[33] Table
1 summarizes trends in development of numerical
calculation libraries which focus on each automatic
tuning function. As shown in Table 1, many research
institutions tackle researches on numerical calculation
libraries with these automatic tuning functions.
 In general, future research topics will be
performance enhancement by improved optimization
methods, and automatic tuning techniques for novel
hardware architectures. Regarding heterogeneous
parallel and distributed system which is considered as
one of typical novel hardware architectures, research
is still at the stage of manual tuning.[35,36] Thus
progress from manual tuning into automatic tuning is
expeceted.

4-3 Programming Language Extension and
Integrated Development Environments for
Automatic tuning

 As described above, in order to achieve dynamic
automatic tuning functions, programming language
extension is introduced for automatic tuning in
existing programming languages. Moreover, for
advanced automatic tuning, support tools including
performance evaluation and analysis functions are
used from integrated development environments.
For once we write source code containing automatic
tuning functions, we can easily improve performance
corresponding to updated hardware such as a large
scale parallel and distributed system. Consequently, it
results benefits of reduced hardware dependency and
improved software portability.
 Figure 10 shows the history of development of
programming language extensions and integrated
development environments for software automatic
tuning, and forecasted future development
trends.[31,33,40-43] Here, items with a * denote integrated
development environments, and the others are
prog ram ming lang uage extensions. ROSE
and Active Harmony are programming language
extension tools which add performance measurement
functions for automatic tuning into source code
written in various programming languages. POET in
combination with ROSE, and CHiLL in combination
with Active Harmony, are integrated development
environments which optimize various parameters
of software automatic tuning. ABCLibScript
provides a programming language extension
with multiple functions for automatic tuning, but

Figure 10 : Trends in Development of Programming Language Extension and Integrated
Development Environments for Automatic Tuning

Prepared by the STFC based on References[31,34,41,42,44]

Extension of programming
languages for automatic
tuning

Enhance optimization
of automatic tuning

OpenATLib
SPRAT

tuning of automatic tuning

research Topics
• Application to general

numerical simulations
G li ft

FIBER
ABCLibScript

VisABCLib/ABCLibScript*

POET/ROSE*

• Generalize software
development using
automatic tuningActive Harmony

CHiLL/Active Harmony*

ROSE
POET/ROSE

20251995 2000 2005 2010 2015 2020 20251995 2000 2005 2010 2015 2020

62

S C I E N C E & T E C H N O L O G Y T R E N D S

applicable programming language is currently
limited to FORTRAN, C language extension is now
planned. VisABCLib is a software automatic tuning
integrated development environment which handles
ABCLibScript, with the special feature of advanced
functions for visualizing software performance.
SPRAT is a programming language extension that
generates CUDA source code for GPUs and C++
source codes for multi-core CPUs, to achieve higher
performance by automatically switching calculations
between CPUs and GPUs corresponding to hardware
performance.[34]
 High performance numerical calculation libraries,
such as matrix calculation and signal processing,
have been developed using programming language
extensions and integrated development environments
for automatic tuning, but different issues remain in
automatic tuning for general numerical simulations.
For example, in simulations which describe interaction
between f luids and rigid (or elastic) bodies and
interaction in molecular dynamics, etc., conditional

branches often appear in loop iteration, which cannot
be handled sufficiently by automatic tuning techniques
for high performance numerical calculation libraries.
Consequently, software development based on
automatic tuning for these general simulations will be
a research topic.
 As shown in Table 2, many research institutions
tackle research on both programming language
extensions and integrated development environments.

New Moves towards Software
Automatic Tuning Applications

 The history of software automatic tuning began
from research on performance enhancement in
numerical calculation libraries. Therefore it has
focused on performance enhancement for numerical
calculation libraries such as linear equation systems
and eigenvalue problems, and applications to general
numerical simulation software seem to be inactive
so far. A problem is insufficient cooperation between

Name Organization Functions

ROSE

Lawrence
L ive r more Nat i ona l
L a b o r a t o r y , U n i t e d
States

Programming language extension in order to convert source code written in
FOTRAN, C, C++, OpenMP, and UPC. By using ROSE, it allows to implement
automatic tuning for source codes written in various programming languages.

POET (Parameterized
O p t i m i z a t i o n s f o r
Empirical Tuning)

University of Texas at
Austin, United States

Integrated development environment which applies optimization techniques
such as full search, simplex method, simulated annealing, genetic algorithms,
etc. to parameter adjustment by automatic tuning. Used in combination with
ROSE.

Active Harmony University of Maryland,
United States

Programming language extension for automatic tuning for run-time software
performance measurement and feedback.

CHiLL
University of Southern
C a l i f o r n i a , U n i t e d
States

Integrated development environment for automatic tuning with optimization
techniques which adjust parameters by changing region correspoinding to
simplex in search space. Used in combination with Active Harmony.

FIBER (Framework
of Install-time, Before
E xecute - t ime, and
Run-time Auto-tuning)

University of Tokyo

Development framework for numerical calculation libraries with automatic tuning
during installation, before execution and run-time. It supports the following
automatic tuning techniques.

•During installation: Optimization of library to match target hardware.
•Before execution: Optimization depending on problems such as matrix size
•Run-time: Optimization considering distribution of nonzero elements in a sparse
matrix, optimization of communication methods

ABCLibScript University of Electro-
Communications

Programming language extension for automatic tuning specialized for
numerical simulation. It automatically executes 3 tuning techniques: block width
adjustment, algorithm selection, loop unrolling adjustment.
ABCLibCodeGen generates automatic tuning programs from source codes
written in FORTRAN with additional ABCLibScript description. Then it repeats
performance sampling, thereby an automatically tuned program can be
obtained.

VizABCLib University of Electro-
Communications

Programming support tool using ABCLibScript that has the following functions.
•Interactive display for automatic tuning code
•Generate a log in automatic tuning process
•Compare predicted performance and measured performance
•Systematic performance evaluation
•Database of information required in automatic tuning: calculation scheme,

algorithms, etc.

SPRAT Tohoku University
Compiler generating both C++ program for CPU and CUDA program for GPU
from source code written in a special programming language which does not
depend on the CPU and GPU.

Table 2 : Characteristics of Automatic Tuning Programming Language Extensions and Integrated Development
Environments on R&D in progress

Prepared by the STFC based on References[31-34, 41-44]

5

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

63

computer scientists who pursue software automatic
tuning and researchers in various fields using
numerical simulation. As an example of promoting
such cooperation, in the Scientific Discovery through
Advanced Computing (SciDAC-2) program by the
Office of Science of the U.S. Department of Energy,
there is the Performance Engineering Research
Institute (PERI)[45] project which focuses on software
performance engineering including automatic tuning.
Their activities are described below.

 The background to launch PERI is as follows.
In the SciDAC-1 program started in 2001, PERI’s
predecessor the Performance Evaluation Research
Center (PERC) project achieved research works on
benchmarking, analysis, performance modeling and
optimization of numerical simulation programs for
high performance computing, and their application
to climate prediction models, plasma turbulence
and accelerator simulations. From these research
works and their applications, it makes the issues
described in Section 2 clear. There are obstacles to
smooth progress in research in which software must
be rewritten for novel hardware because hardware
lifetime is shorter than software lifetime. Problems
between both types of researchers were also pointed

out: researchers using numerical simulation do not
provide information on portability of source code, on
the other hand, computer scientist are not interested in
tools to port developed software. While considering
these problems, the PERI project was begun as a
successor project to PERC.
 Currently, both the SciDAC program and INCITE
(Innovative and Novel Computational Impact on
Theory and Experiment) program are included in the
Advanced Scientific Computing Research (ASCR)
program by the Office of Science, Department of
Energy in the U.S. SciDAC-2 is a program which
focuses on software fundamental technology in high
performance computing. On the other hand, INCITE
program mainly provides high performance hardware
and computing resources for numerical simulations.

5-1 SciDAC-2 Research on Fundamental Software
for Numerical Simulation

 As shown in Figure 11, SciDAC-2 is broadly
grouped into 3 organizations in charge of Research on
fundamental technologies, Application of fundamental
technologies, and Scientific applications. Table 3
shows each project and research topics of SciDAC-2
in 2009. It is a notable aspect that Outreach Center
in SciDAC-2 which acts as a support organization

Figure 11 : Components of the SciDAC-2 Program including PERI Project
Prepared by the STFC based on References[45]

CACAPES Argonne National Laboratory

(1) SciDAC-2 (Refer to Table 3) (2) PERI (Refer to Table 4)

Research on
fundamental
technologies

PDSI

PERI

ULTRAVIS

Lawrence Berkeley National Lab

Oak Ridge National LaboratoryOrganizations

Lawrence Livermore National Lab

APDEC

CEDPS

CScADS

Oak Ridge National Laboratory

North Carolina State University

University of Maryland

participating in
software
performance
engineering
researchCScADS

ESG

ITAPS

Outreach

University of North Carolina

Rice UniversitySupport for
SciDAC-2

project University of Oregon

SciDAC-2
Application of
fundamental
technologies

Outreach

SDM

TASCS

University of Southern California

University of Tennessee at Knoxville

University of Utah
GTCTOPS

VACET

Material Sci. Chem.

Verification of
performance enhancement S3D

Performance databaseSupport for
joint

h

GTC

Life Science

Climate

Fusion Energy
Scientific
applications

Liaison
research

Promote joint research with

Groundwater

Physics

j
other projects

64

S C I E N C E & T E C H N O L O G Y T R E N D S

for disclosure of research results, etc. In addition to
publishing project information, this Outreach Center
plays important roles, such as user support and
training, and active promotion for building up closer
connections between projects.

5-2 Research on Sof tware Per formance
Engineering in PERI Program

(1) Roles of PERI
 As part of the SciDAC-2 program, a goal of PERI
is to provide software development technology for
high performance computing to numerical simulation
research in other projects. PERI is in charge of the

following R&D.
•Performance modeling for numerical simulations
•Accurately predict the execution speed which can be

obtained from developed software.
•Software automatic tuning R&D
•Set highly difficult long term research targets for

reducing the researchers’ programming burdens.
•Application R&D
•Apply research works in PERI to numerical

simulations in other R&D projects in SciDAC-2.

(2) PERI’s Organization and Operation
 Looking at PERI’s organization and operation, it

Abbreviation of
organization Organization name Topics

CACAPES
Combinatorial Scientific
Computing and Petascale
Simulations Institute

Load balancing for parallel computing, automatic differentiation, sparse
matrix calculation

PDSI Petascale Data Storage
Institute

Specifications, standards, algorithms, and performance measurement tool
development focused on data storage

PERI Performance Engineering
Research Institute

Software performance engineering:
software performance modeling, performance prediction, software
automatic tuning, applications

ULTRAVIS Institute for Ultra-Scale
Visualization

Development of visualization tools for extracting potential information from
huge data sets

APDEC Applied Partial Differential
Equations Center Algorithms and software framework for partial differential equations

CEDPS Center for Enabling Distributed
Petascale Science

High reliable and high performance data transfer mechanism and resource
allocation and virtualized environment on grid

CScADS
Center for Scalable
Application Development
Software

Petascale computing platform, communication library, mathematical
library, open source compiler

ESG Earth System Grid Center for
Enabled Technologies

Data creation for next generation simulation integrating the atmosphere,
sea and land for climate and weather forecasts

ITAPS
Interoperable Technologies
for Advanced Petascale
Simulations Center

Mutual use of SciDAC applications, and compatible data manipulation
tools for mesh, geometry, etc.

Outreach Outreach Center Share information among projects, support services, training, transfer of
SciDAC research results to new organizations

SDM Scientific Data Management
Center

Science and technology computing workflow automation, data mining,
data analysis, efficient access to storage

TASCS
Center for Technology
for Advanced Scientific
Component Software

Develop component software for parallel simulations, hardware and
software to improve quality, robustness, dynamic adaptability, and
usability.

TOPS Towards Optimal Petascale
Simulations R&D to solve bottlenecks of scalable solvers and applications

VACET
Visualization and Analytics
Center for Enabling
Technologies

R&D on data visualization and analysis software

Material
science,
Chemistry

Petascale computational chemistry and material modeling, quantum
simulation of nanostructures, crack analysis under stress, chemical
reactions and interactions in fluids

Life science
Impacts of microbes and
bacteria on environment.
Energy generation.

Hydrogen generation, bioethanol and energy generation from microbes

Climate Climate and weather
Successive, dynamic and adaptive grid computing for physical and
chemical models of earth climate, cloud modeling and its validation,
improvement of global climate model, and atmosphere model.

Fusion energy Alternative clean energy Turbulence analysis for plasma fusion

Groundwater Model for contaminant dispersion by groundwater and geometric,
biological and chemical model of underground

Physics Subatomic particles, nuclear energy, astrophysics, turbulence analysis of
shock waves, open science grid

R
e

s
e

a
rc

h
 o

n
 f

u
n

d
a

m
e

n
ta

l
te

ch
no

lo
gi

es
A

pp
lic

at
io

n
of

 fu
nd

am
en

ta
l t

ec
hn

ol
og

y
S

ci
en

tifi
c

ap
pl

ic
at

io
ns

Table 3 : Organizations and Topics in SciDAC-2 Program

Prepared by the STFC based on References[45]

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

65

Organization Topics

Argonne National

Laboratory

Service infrastructure software quality enhancement for numerical simulations (in cooperation with TASCS).
Software performance databases: interface extension and addition of simple interface for application
developers.
Definition and component implementation of interface to automate learning in automatic tuning.
Infrastructure to share hardware performance database among applications.
Performance analysis interface extension using PerfExplorer.
Making more robust analysis component prototype based on machine learning (in cooperation with University
of Oregon).
FLASH application performance evaluations on Argonne National Laboratory’s Blue Gene/P and Oak Ridge
National Laboratory’s Cray XT3.

Lawrence Berkeley
National Laboratory

PERI project management.
Check progress of PERI and fundamental technology research organizations.
Analysis processing of plasma turbulence analysis team.
Quantum calculation software tuning of material simulations for new solar cells.
Development and testing of automatic tuning functions for applications on multi-core processors.

Lawrence
Livermore National
Laboratory

Empirical tuning using POET, which is a tool for automatic tuning.
Continue survey of software performance evaluation, especially cross-platform models.
Coordinate with PERI researchers of other organizations and integrate various performance prediction tools.
Application of software automatic tuning and performance prediction tools to SciDAC applications.
Generate models showing activity of MPI applications.
Extension of MPI tracing mechanism which measures communication patterns.
Implementation of functions which measure performance distribution of MPI events.
Survey of advanced techniques for ideal tracing including timestamps.
Promote activities of performance enhancement verification teams.

Oak Ridge National
Laboratory

Continue development of interconnect simulator for network topology and routing settings, which is required
by the teams verifying performance enhancement.
Comparison of models and simulation results for performance measurement in large scale systems.
Improve accuracy of models which identify scaling bottlenecks.
Support joint research for applications in climate and weather, fusion, material science, and groundwater.
Promote application of PERI’s research results.
Promote cooperation with projects outside SciDAC.

North Carolina
State University

Continue support for joint research of application teams, analyze performance and optimize on Cray XT4 and
BlueGene/P.
Continue to support communication of application teams with PETSc developers and users, and improve I/O
and user routines.

Rice University

Continue joint work with Cray and IBM to solve problems of performance sampling using hardware counter
function of OS.
Introduce HPCToolkit at the stage after OS problems are fixed.
Continue to work on extension of path profiling function of optimization code of HPCToolkit.
Continue to work on extension of performance analysis techniques for OpenMP and MPI+OpenMP programs.
Coordinate with SciDAC and INCITE application teams.

University of
California,
San Diego

α testing of network simulator.
β release of network simulator.
Basic R&D for memory tracing estimation in large scale data and processor systems.

University of
Maryland

Integration of automatic tuning framework including an empirical search function.
Complete integration of Active Harmony with the ChiLL framework, and start evaluation.
Development of PERI-DB search API.
Support for performance enhancement verification teams.

University of
Oregon

Continue support for performance measurement and analysis of petascale applications.
Continue performance measurement and fluid analysis and plasma turbulence analysis applications of
performance enhancement verification teams.
Continue integration of performance database with PERI-DB group.
Use PerfExplorer in data analysis of performance enhancement verification teams.

University of
Southern California

Management of entire PERI project.
Continue API development for automatic tuning users.
Research to determine specifications related to automatic tuning and ChiLL.
Coordinate with SciDAC and INCITE application teams.
R&D on data copying libraries (cooperate with University of Utah).
Continue integrating Active Harmony with ChiLL (joint research with University of Maryland and University of
Utah).

University of
Tennessee at
Knoxville

Continue development of cross-platform performance counter library which supports PERI performance
modeling and automatic tuning.
Research on empirical search techniques for automatic tuning, and integration with PERI automatic tuning
framework.
Research on optimization techniques for multi-core architectures, and integration with PERI automatic tuning
framework.
Cooperate in building database of performance enhancement verification teams.

University of Utah

Drive the PERI automatic tuning groups, make reports with external joint researchers, and coordinate poster
presentations and paper publications.
Introduce thread mechanisms in automatic tuning compiler technology.
Develop of data compiler library (joint research with University of Southern California)
Continue to integrate Active Harmony with Chill (cooperate with University of Southern California and
University of Maryland).
Work to build a stable release of CHiLL (cooperate with University of Southern California).

Table 4 : Participating Organizations in PERI and Topics

Prepared by the STFC based on References[46

66

S C I E N C E & T E C H N O L O G Y T R E N D S

is noteworthy that they form and operate a highly
productive organization based on comprehensive
understanding of the components in numerical
simulations as shown in Figure 5, focused on R&D
in software performance engineering for software
fundamental technologies. Specifically, it works
to share R&D goals, and to build up a connection
between each fundamental research and applied R&D.
As a result, PERI seems to be excellent at quickly
removing obstacles on the way to practical use.

 As shown in Figure 11, PERI contains groups being
in charge of software performance engineering,
and groups supporting joint research on numerical
simulation applications etc. Table 4 shows the topics
assigned to 4 national laboratories and 8 universities.
In addition to each project’s R&D, it is noteworthy
that they work on coordination with other projects
in PERI, SciDAC-2, INCITE, etc. In supporting
organizations for joint research, there are plasma
fusion simulation applications (GTC), fluid simulations
(S3D), performance database building, and liaison for
joint research with other projects. Note that the liaison
group members are also members of groups being in
charge of software performance engineering.
 A meeting of all PERI groups is held each year,
and biweekly telephone conferences are held for
close coordination. It is also publicly decided that
unscheduled meetings are held Monday mornings.
Moreover, limited resources are focused on important
SciDAC-2 projects, and they take care not to change
a research organization for general computer science
and mathematics which are unrelated to software
performance engineering. In this way, efficient
research management is performed, and in order
to smoothly apply research results to numerical
simulations, Outreach Center supporting SciDAC-2
projects and liaison within PERI play important roles.

Issues for Research Promotion in
Japan

 As described above, there is a steady increase in
numerical simulations on parallel distributed systems
using commodity processors, but it is extremely
difficult to develop software for high performance
computing which makes full use of hardware
performance. This is why software fundamental
technology with automatic tuning technology as

the core is playing an important role in software
development for high performance computing.
Especially for heterogeneous parallel distributed
systems, tuning itself is at a research stage before
automation, and there is a need to advance research
which aims at practical use of automatic tuning.
 In Japan, researchers in numerical computing who
belong to universities and companies have launched
the Automatic Tuning Research Group. They
reported a survey of automatic tuning technology[48]
and created a specification of Application Program
Interface (API) in the OpenATLib automatic tuning
library and programming language extension. Also,
the Automatic Tuning Research Group has held the
International Workshop on Automatic Performance
Tuning (iWAPT) since 2006, which is also attracting
the attention of overseas researchers.
 The research works in Japan at a level similar
to in the U.S., but issues remain its promotion. A
roadmap from research to practical use in numerical
simulations, resource allocation and sharing among
researchers are insufficient in Japan, because the
promotion organization consists of the researchers
themselves. Especially for R&D on software
fundamental technologies at universities and research
institutes, it may be most efficient to pursue research
and applications in parallel with overlook of the
related projects, like SciDAC-2 and its PERI in the U.S.
We hope to reconsider of research management in
research organizations in Japan, in order to efficiently
drive fundamental technology research and applied
research.

Acknowledgements
 We are very grateful for the valuable comments
from Professor Kengo Nakajima of the University
of Tokyo Information Technology Center, Project
Associate Professor Takahiro Katagiri, Shoji
Itoh of the Advanced Center for Computing and
Communication at RIKEN, Associate Professor
Toshio Endo of the Graduate School of Information
Science and Engineering at Tokyo Institute of
Technology, Program Director Kunihiko Watanabe
of the Japan Agency for Marine-Earth Science and
Technology, and CEO Satoshi Miki and CTO Yosuke
Tamura of Fixstars Corp.

6

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

67

ABCLib: Automatically Blocking and Communication-adjustment Library
APDEC: Applied Partial Differential Equations Center
ASCR: Advanced Scientific Computing Research
ATLAS: Automatically Tuned Linear Algebra Software
CACAPES: Combinatorial Scientific Computing and Petascale Simulations Institute
CEDPS: Center for Enabling Distributed Petascale Science
CScADS: Center for Scalable Application Development Software
ESG: Earth System Grid Center for Enabled Technologies
FFT: Fast Fourier Transform
FFTW: the Fastest Fourier Transform in the West
FIBER: Framework of Install-time Before Execute-time, and Run-time auto-tuning
GPU: Graphics Processing Unit
GTC: Gyrokinetic Turbulence Code
HPC: High Performance Computing
ILIB: Intelligent Library
INCITE: Innovative and Novel Computational Impact on Theory and Experiment
ITAPS: Interoperable Technologies for Advanced Petascale Simulations Center
iWapt: International Workshop on Automatic Performance Tuning
OSKI: Optimized Sparse Kernel Interface
PARATEC: Parallel Total Energy Code
PDSI: Petascale Data Storage Institute
PHiPAC: Portable High Performance ANSI C
PERC: Performance Evaluation Research Center
PERI: Performance Engineering Research Institute
SciDAC: Scientific Discovery through Advanced Computing
SDK: Software Development Kit
SDM: Scientific Data Management Center
SPIRAL: Software/Hardware Generation for DSP algorithms
TASCS: Center for Technology for Advanced Scientific Component Software
TOPS: Towards Optimal Petascale Simulations
ULTRAVIS: Institute for Ultra-Scale Visualization
VACET: Visualization and Analytics Center for Enabling Technologies
Xabclib: eXtended ABCLib

[1] World Technology Evaluation Center, Inc., WTEC Report on International Assessment of Research and
Development in Simulation-Based Engineering and Science, (Apr. 2009)

[2] Minoru Nomura, Trends in High-End Computing in United States Government, Science & Technology
Trends : Quarterly Review No.16 (2005.07)

[3] Yoshitaka Tateyama, Dissemination of Nanosimulation Techniques to Promote the Development of
Nanotechnology, Science & Technology Trends : Quarterly Review No.20 (2006.07)

[4] Minoru Nomura, Petascale Computing Trends in Europe, Science & Technology Trends : Quarterly Review
No.27 (2008.04)

[5] Leonid Oliker, Andrew Canning, Jonathan Carter, Costin Iancu, Michael Lijewski, Shoaib Kamil, John
Shalf, Hangzhang Shan, Eric Strohmaier, Stephan Ethier, Tom Godate, Scientific Application Performance
on Candidate PetaScale Platforms, Proc. IPDSP, (2007)

[6] Fumitoshi Sato, Toshiyuki Hirano, Toshihiko Abe, Noriko Uemura, Naoki Tsunegawa, Yasuyuki
Nishimura, Tomomi Yamaguchi, Hidenori Yukawa, Kentaro Ishikawa, Koji Chiba, All-Electron
Simulations of Proteins by Density Functional Method, Proceedings of the 28th Japan Society for
Simulation Technology Annual Conference, pp.163-166, (2009.06) [Japanese language]

References

Abbreviations

68

S C I E N C E & T E C H N O L O G Y T R E N D S

[7] Japan Agency for Marine-Earth Science and Technology, Annual Report of the Earth Simulator
Strategic Industrial Use Program, (2008.09) [Japanese language]

[8] Increase in Number of Processors Installed in High Performance Computers, Science & Technology
Trends, No.90, (2008.09) [Japanese language]

[9] IBM, Cell Broadband Engine Technology
http://www-03.ibm.com/technology/resources/technology_cell_pdf_CellBrBandEngineWhitePaper.pdf

[10] Richard Walsh, Steve Conway, Earl C. Joseph, Jie Wu, With Its New PowerXCell 8i Product Line, IBM
Intends Take Accelerated Processing into the HPC Mainstream, August 2008
http://www-03.ibm.com/technology/resources/technology_cell_IDC_report_on_PowerXCell.pdf

[11] MSC NASTRAN, http://www.mscsoftware.co.jp/products/nastran/
[12] ANSYS Inc., http://www.ansys.com/
[13] The Official Gaussian Website, http://www.gaussian.com/
[14] SIMULIA, http://www.simulia.com/
[15] Amber and NPACI: A Strategic Application Collaboration for Molecular Dynamics

http://www.sdsc.edu/pub/envision/v14.4/sac_amber.html
[16] Livermore Software Technology Group, http://www.lstc.com
[17] Kengo Nakajima, Education Program for “Interdisciplinary Computational Science and Engineering” at the

University of Tokyo
http://hss.iic.hokudai.ac.jp/WS07/pdf/Nakajima.pdf

[18] OpenMP, http://openmp.org/wp/
[19] MPICH2, http://www.mcs.anl.gov/research/projects/mpich2/
[20] CUDA Zone, http://www.nvidia.com/object/cuda_home.html#
[21] ATI Stream Software Development Kit

http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
[22] General-Purpose Computation on Graphics Hardware, http://gpgpu.org/
[23] Aleksey Bader et al., Game Physics Performance on the Larrabee Architecture

http://download.intel.com/technology/architecture-silicon/GamePhysicsOnLarrabee_paper.pdf
[24] MARS: Multicore Application Runtime System

http://ftp.uk.linux.org/pub/linux/Sony-PS3/mars/1.1.4/mars-docs-1.1.4/html/
[25] The Khronos OpenCL Working Group, The OpenCL Specification, Version 1.0, Document Revision 29

http://www.khronos.org/news/press/releases/the_khronos_group_releases_opencl_1.0_specification/
[26] Toshio Endo, Tokyo Institute of Technology, Accelerator Utilization Example in TSUBAME, Journal of

Information Processing, Vol.50, No.2, pp.100-106, (2009.02) [Japanese language]
[27] Takayuki Aoki, CFD Applications Fully Accelerated by GPU, Journal of Information Processing, Vol.50,

No.2, pp.107-115, (2009.02) [Japanese language]
[28] Akira Tsukamoto, Kinuko Yasuda, Yosuke Tamura, Hiroyuki Machida, Characteristics of Cell/B.E.

Programming and Introduction of Utilization Example, Journal of Information Processing, Vol.50, No.2,
pp.116-128, (2009.02) [Japanese language]

[29] Tetsu Narumi, Tsuyoshi Hamada, Fumikazu Konishi, Acceleration of Particle Method Simulation by
Accelerator, Journal of Information Processing, Vol.50, No.2, pp.129-139, (2009.02) [Japanese language]

[30] Reiji Suda, Mathematics of Software Automatic Tuning, Journal of Information Processing, Vol.50, No.6,
pp.487-479, (2009.06) [Japanese language]

[31] Shoji Itoh, Support Tools for Software Automatic Tuning, Journal of Information Processing, Vol.50, No.6,
pp.499-504, (2009.06) [Japanese language]

[32] Hisayasu Kuroda, Ken Naono, Takeshi Iwashita, Numerical Libraries with Automatic tuning Function,
Journal of Information Processing, Vol.50, No.6, pp.505-511, (2009.06) [Japanese language]

[33] Takahiro Katagiri, Progamming Language to Describe Software Automatic Tuning, Journal of Information
Processing, Vol.50, No.6, pp.494-498, (2009.06) [Japanese language]

[34] Hiroyuki Takizawa, Software Automatic Tuning in GPU Computing, Journal of Information Processing,

Q U A R T E R L Y R E V I E W N o . 3 5 / A p r i l 2 0 1 0

69

Takao Furukawa
Senior Research Fellow
Promoted Fields Unit
Science and Technology Foresight Center
http://www.nistep.go.jp/index-j.html

In an IT venture company, performed R&D on design support systems using computer graphics,
and applications applying real-time video processing. At his present position since 2009.

(Original Japanese version: published in November 2009)

Profile

Vol.50, No.6, pp.527-531, (2009.06) [Japanese language]
[35] Zendo Shimoda, PowerXCell and Linear Calculation, Forum on Advanced Scientific Computing 2008 –

Focused on Linear Calculation -, (2008.09) [Japanese language]
[36] Toshio Endo, Akira Nukada, Satoshi Matsuoka, Naoya Maruyama, Hideyuki Jitsumoto, Linpack Tuning on a

Heterogeneous Supercomputer with Four Types of Processors, 16th Hokkaido “High Performance Computing
and Architecture Evaluation” Workshop (HOKKE-2009), (2009.02) [Japanese language]

[37] Takahiro Katagiri, Takao Sakurai, Hisayasu Kuroda, Ken Naono, Kengo Nakajima, OpenATLib: Design and
Implementation of General Automatic Tuning Interface, SwoPP2009, (2009.08) [Japanese language]

[38] Richard Vuduc, James W. Demmel, and Katherine A Yelick, OSKI: A library of automatically tuned sparse
matrix kernel, Journal of Physics: Conference Series, Vol.16, No.1. 512 (2005)

[39] M. Puschel el al., SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing Algorithm,
International Journal of High Performance Computing Applications, Vol.18, No.1, 21-45 (2004)

[40] Keith Seymour, Haihang You, Jack Dongarra, A Comparison of Search Heuristics for Empirical Code
Optimization, Proc.2008 IEEE International Conference on Cluster Computing, pp.421-429, (Oct. 2008)

[41] ROSE, http://www.rosecompiler.org/index.html
[42] Qu Yi, Keith Seymour, Haihang You, Richard Vuduc, Dan Quinlan, POET: Parameterized Optimization for

Empirical Tuning, Proc. IPDPS 2007, pp.1-8, (Mar. 2007)
[43] PETSc, http://www.mcs.anl.gov/petsc/petsc-as/
[44] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, Jefferey K. Hollingsworth, A Scalable Autotuning

Framework for Compiler Optimization, Proc. IPFPS 2009, (May. 2009)
[45] SciDAC, http://www.scidac.gov/
[46] Performance Engineering Research Institute, http://www.peri-scidac.org/perci/
[47] The Office of Advanced Scientific Computing Research http://www.er.doe.gov/ascr/About/about.html
[48] Automatic Tuning Research Group, Survey of Topics in Automatic Tuning Technology, (2008.11) [Japanese

language]

Minoru Nomura
Affiliated Fellow
Information & Communications Unit
Science and Technology Foresight Center
http://www.nistep.go.jp/index-j.html

At a company, performed R&D on CAD for computer design, and business development in the
high performance computing market and ubiquitous market. Now works at STFC. Interested in
science and technology trends in information and communications fields: supercomputing, LSI
design technologies, etc.

科 学 技 術 動 向　2009年 11月号

38

執筆者プロフィール

古川　貴雄
推進分野ユニット
科学技術動向研究センター　上席研究官

ITベンチャー企業でコンピュータグラフィックスを用いた設計支援システム、実時間動
画像処理を応用したアプリケーションの研究開発に従事し、2009年より現職。

野村　稔
情報・通信ユニット
科学技術動向研究センター　客員研究官

企業にてコンピュータ設計用 CADの研究開発、ハイ・パーフォーマンス・コンピュー
ティング領域、ユビキタス領域のビジネス開発に従事後、現職。スーパーコンピュータ、
LSI設計技術等、情報通信分野での科学技術動向に興味を持つ。

http://www.nistep.go.jp/index-j.html

http://www.nistep.go.jp/index-j.html

科 学 技 術 動 向　2009年 11月号

38

執筆者プロフィール

古川　貴雄
推進分野ユニット
科学技術動向研究センター　上席研究官

ITベンチャー企業でコンピュータグラフィックスを用いた設計支援システム、実時間動
画像処理を応用したアプリケーションの研究開発に従事し、2009年より現職。

野村　稔
情報・通信ユニット
科学技術動向研究センター　客員研究官

企業にてコンピュータ設計用 CADの研究開発、ハイ・パーフォーマンス・コンピュー
ティング領域、ユビキタス領域のビジネス開発に従事後、現職。スーパーコンピュータ、
LSI設計技術等、情報通信分野での科学技術動向に興味を持つ。

http://www.nistep.go.jp/index-j.html

http://www.nistep.go.jp/index-j.html

