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Introduction

   Computer performance has been improved by 
increase of CPU (central processing unit) clock 
frequency based on miniaturization of semiconductor 
manufacturing process, however this reaches the 
upper limit caused by increase of heat generation, 
power consumption and leakage current since around 
2005. To overcome these problems, in recent years, 
improvement of computer performance by parallel 
processing using multi-core processors which have 
multiple cores executing general operations at lower 
clock frequency has become a central issue.[8] Since 
the year 2000, various processors have come on the 
market, for example multi-core CPUs, GPU (Graphics 
Processing Units) which enable fast numerical 
computations, and heterogeneous processors which 
combine an ordinary core for general oprerations 
with special cores for numerical operations. While 
such high performance processors based on parallel 
computing have come, ironically, development of 
numerical simulation software with high execution 
efficiency has been extremely difficult.
   In order to make full use of parallel hardware, we 
must select suitable calculation algorithms for the 
hardware architecture, and adjust programs to raise 
execution efficiency. This is called software tuning, 
which is an essential element for software development 
in high performance computing. There are technical 
difficulties as well as tremendous work in manual 
software  tuning for extremely complicated hardware 
architecture in recent years. Furthermore, developed 
software must be rewritten and tuned in accordance 
with frequently updated hardware architecture to keep 
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existing software resources. This increases software 
maintenance costs. It is a serious obstacle of efficient 
progress of R&D in numerical simulation to update 
software for the latest hardware architecture.
   This paper first describes trends in hardware 
architecture and software applications, next provides 
an overview of layer structure in parallel and 
distributed software for high performance numerical 
simulation. We then discuss automatic tuning, which 
plays an important role to develop software for 
high performance computing. Finally, we introduce 
new trends in research organizations promoting 
fundamental software technology.

Trends in Hardware Architecture 
and Software Applications

2-1 Diversifying Commodity Processors and their 
Trends

   Commodity processors (also called microprocessors, 
MPUs) are mass produced low cost processors for 
PCs, servers and game consoles. In recent years, high 
performance computers for simulation in science and 
technology are also increasingly adopting parallel and 
distributed systems using commodity processors.
   Figure 1(a) to (d) show typical architectures of 
commodity processors. (a) Single core CPU and (b) 
Multi-core CPU designed for general operations that 
have a large instruction set enabling complicated 
processing is comprised of a core1 processing unit 
with memory storing data. For example, it has 
acceleration functions such as  a special instruction 
for sequential data multiplication and out of order 
execution which invokes independent processes for 
fast overall processing. The bottom half of Figure 
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1 shows  (c) GPU and (d) Cell/B.E. (Broadband 
Engine)TM, which are mainly composed of core2 
(processing units designed for specific numerical 
operations). Initially, (c) GPU and (d) Cell/B.E. were 
developed with the goal of reducing CPU load by 
isolating numerical operations: dot and cross products 
which are widely used in 3D computer graphics, 
and audio and visual data processing that handles 
compressed data encoding and decoding. In recent 
years, numerical simulations using (c) GPU and (d) 
Cell/B.E. as cores[NOTE 1] have been popular in which 
their high performance is widely noticed.
   Cell/B.E.[NOTE 2] in Figure 1(d), which is one type 
of heterogeneous processor, gives the following 
improvements compared to conventional CPUs.[9, 28]

● Improved data transfer efficiency in processor
   From the aspect of enhancing processing speed, 
there are bottlenecks in the time required for  reading 
or writing data in memory, and data transfer time 
among cores. In order to achieve high speed data 
transfer, it uses dual high speed ring networks 

connecting each core2 for fast numerical operations.

● Efficient processing and power savings using a 
general processing core and numerical operation 
cores
   The combination with core1 and core2 improves 
execution efficiency and reduces power consumption 
by allotting operations according to their content. A 
core1 executes general operations and multiple core2s 
mainly execute numerical operations. The larger 
number of transistors in a CPU not only increases 
power consumption, but also increases the power 
used in chip cooling. Thus instead of increasing the 
number of core1 which executes various complicated 
processing, increasing the number of core2 which 
executes numerical operations, thereby reduces the 
total number of transistors on the chip.
   Figure 2 shows changes in hardware architectures 
and their relationships with high performance 
software development.  A CPU which controls 
operation processing as the heart of a computer has 
been realized with a single core for a long time. Then 
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Figure 1 : Architectures of Commodity Processors

[NOTE 1] 
Floating point data used in GPUs were extended from single precision to double precision, and were 
also compatible with the IEEE754 floating point operation standard. Consequently it makes easier to use 
GPUs in numerical simulations which require calculation precision.
[NOTE 2] 
IBM’s PowerXCellTM is a product which accelerated the double precision floating point operations of 
Cell/B.E.
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multi-core CPUs appeared in the market.  Furthemore, 
various architectures which use GPUs and multi-core 
CPUs together came to be adopted. Heterogeneous 
processors comprises of different cores on one chip.  
There is a steady move towards heterogeneous parallel 
and distributed systems which mix these architectures. 

This trend that the various hardware architectures 
mentioned above are combined will continue.
   Heterogeneous processors would be widely used 
from the trend appeared in IBM’s Cell/B.E.TM, 
AMD’s StreamComputing,[21] and Intel’s Larrabee.[23] 
However, data transfer between CPU-GPU tends to be 

Prepared by the STFC based on Reference[9,20,26]

Figure 2 : Hardware Architecture Changes and Increasing Difficulty of Software Development for 
High Performance Computing

Prepared by the STFC based on Reference[11-16]

Figure 3 : Changes in Numerical Simulation Software and Hardware
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a bottleneck in current architectures. In the short term, 
a part of numerical simulations by heterogeneous 
parallel and distributed systems, which combine CPUs 
and fast numerical calculation GPUs, or heterogeneous 
processors, are cost effective compared to the cases 
of homogenous parallel and distributed systems 
constructed by the identical CPUs.
   Software development targetting a heterogeneous 
parallel and distributed system for high performance 
computing is extremely difficult compared with usual 
development targeting a single core CPU. In a parallel 
and distributed system, execution efficiency is more 
affected by processes such as data allocation and 
integration among processors, and data transfer, etc. 
Thus these factors must be considerd in the software 
development for high performance computing.  
Especially for parallel and distributed systems using 
heterogeneous processors which combine different 
functions, it makes the software development even 
more difficult to get sufficient performance, because 
each core’s process must efficiently work in closer 
cooperation.

2-2 Lifetimes of Numerical Simulation Software
   Numerical simulation software tends to have a 
longer lifetime than for hardware. Figure 3 shows 
changes in typical numerical simulation software and 
hardware, especially commodity processors. There 
is leading numerical simulation software used even 
today with about 40 years of history. On the other 

hand, commodity processor architecture has been 
frequently changed in a short period of time (this is 
referred to here as a short lifetime for hardware). In 
order to extend the lifetime of numerical simulation 
software, in other words, in order to continue using 
the same software even on hardware with a changed 
architecture, software must be rewritten each time 
to suit the novel hardware. For example, leading 
numerical simulation softwares for structural analysis 
and computational chemistry appeared in the late 
1960s, and these have been used to the present time 
with function extensions.

2-3 Execution efficiency of Numerical Simulation 
Software in Parallel and Distributed Systems

   In general, numerical simulation software 
results very low execution efficiency in parallel 
and distributed systems. Execution efficiency is 
the sustained performance as a ratio of theoretical 
performance as 100%. Figure 4 shows the relationship 
between numerical simulation software and its 
execution efficiency reported by Oliker et.al.[5] The 
evaluation covered the simulations shown below 
which were selected from various science and 
technology fields. The names of numerical simulation 
software used to investigate execution efficiency are 
written in parentheses.
•Linear equation system with a dense coefficient 

matrix (LINPACK)
•Ab initio calculation (PARATEC)

Prepared by the STFC based on Reference[5]

Figure 4 : Execution efficiency of Numerical Simulation Software in a Parallel and Distributed 
System (Results of calculation by a parallel and distributed system using 512 AMD 
Opteron processors)
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•Fluid dynamics (ELBM3D)
•Plasma fusion (GTC)
•High energy physics (BeamBeam3D)
•Gas dynamics (HyperCFlow)
   The execution efficiencies shown in Figure 4 are 
obtained in a parallel and distributed system using 
512 AMD Opteron processors. Execution efficiency 
was over 70% for LINPACK, a benchmark program 
used for comparing high performance computers. 
However, we recognize from Figure 4 except for 
PARATEC,[NOTE 3] numerical simulation software has 
less than 25% execution efficiency. Even if parallel 
processing is introduced, numerical simulation 
software results low execution efficiency. If the 
software is developed for sequential processing, 
source codes which can not be parallelized remain 
for the sake of dependency of processes. While 
parallelization is applicable, data transfer delay 
and load balance among processors make it even 
more difficult to improve execution efficiency in a 
parallel and distributed system. Therefore progress in 
numerical simulation software does not sufficiently 
catch up with hardware performance improvements.

Components  of  Numer ica l 
S i m u l a t i o n  a n d  S o f t w a r e 
Fundamental Technology

 

   Numerical simulation is divided into many 
components, and these are arranged in the five layers 
shown in Figure 5: Theory, mathematical model, 
algorithms, software, hardware.[17]

   On the left side of Figure 5 shows usual components, 
and on the right are new components which should be 
considered. Here, software fundamental technology is 
a set of common components classified in the software 
layer which are used in various numerical simulations, 
such as functions linking with hardware.
   As shown on the left side under “Usual Components 

in Numerical Simulation”, various components 
at each layer must be considered for developing 
numerical simulation software. In the case of software 
for sequential processing, there was no need to 
make a program enabling complicated parallel and 
distributed processing. However, if there is a need 
for numerical simulation software which runs on a 
parallel and distributed system, mathematical models 
and theories as well as algorithms should be designed 
in consideration of hardware architecture. In the 
past software development, each layer was relatively 
independent, but with progress in the use of parallel 
and distributed systems, each layer has been closely 
related. 
   On the right side of the figure, some “New 
Components for Software and Hardware which 
Should be Considered” in the hardware layer 
contains GPUs, heterogeneous processors, and the 
heterogeneous parallel distributed systems which 
use these processors. In the software layer, there are 
Software Development Kits (SDKs) for above parallel 
processors such as CUDA,[20] MARS,[24] and the 
standard OpenCL.[25][NOTE 4] Moreover, combination 
of MPI/OpenMP, and grid computing middleware 
are added to parallel and distributed processing 
frameworks as new components. 
   These components should be considered in software 
development for high performance numerical 
simulation to make full use of novel hardware. 
Due to this situation, software automatic tuning 
related technology plays more important roles as a 
fundamental technology in software development for 
high performance computing. These are discussed in 
detail below.

[NOTE 3] 
PARATEC shows an exceptionally high execution efficiency of about 55%, because Fast Fourier 
Transform (FFT) accounts for the majority of the calculations which can be accelerated by parallel 
processing.
[NOTE 4] 
Specification for an Application Program Interface (API) created by the Khronos Group, which can 
provide integrated handling of multi-core CPUs, GPUs and Cell/B.E. However, with OpenCL 1.0,we 
must write specific programs for each architecture to enahance performace.

3
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Software Automatic Tuning

4-1 Software automatic tuning in Numerical 
Simulation

   Software tuning is a process to adjust software in 
order to make full use of hardware performance.  
Software automatic tuning in numerical simulation 
automatically improves execution efficiency without 
time-consuming manual tuning by adjusting software 
to suit hardware.
   Figure 6 explains an outline of software automatic 
tuning with an example. Let’s consider the case of 
solving the fundamental equation described by a 
partial differential equation using the finite element 
method. In this numerical simulation, the linear 
equation system is solved. Here, the items shown in 
the bottom of Figure 6 represent factors affecting 
calculation speed and calculation accuracy, which 
are called tuning conditions. Tuning conditions are 
divided into simulation models, numerical properties 
of linear equations, solution algorithms, quality of 
calculation program, and the computer system. These 
factors are subdivided into several factors which 
further affect each condition. Arrowed lines shown in 
the figure denote the subdivided factors. 
   A basic software automatic tuning process consists 
of the following 5 processes.

(1) Experiment: Set tuning conditions and execute the 
software

(2) Measurement: Obtain measurement items from 
experimental results, and calculate the evaluation 
function

(3) Analysis: Estimate the performance model from 
the measurement items and evaluation function

(4) Learnning: Automatically update the tuning 
conditions

(5) Decision: Determine optimal tuning conditions
   This process improves performance while 
repeating steps (1) to (4) with changing the tuning 
conditions, then finally obtains the optimal tuning 
conditions in step (5). Among these tuning conditions, 
some items can be automatically determined by 
usual compiler optimization technology. But the 
compiler optimization technology can not handle 
algorithm selection, parameter adjustment and so 
on. Consequently, we define an evaluation function 
reflecting calculation speed of numerical simulation, 
then solving optimization problems, automatic tuning 
is achived which selects optimal algorithms and 
adjusts parameters.
   Next, we explain the effects of software tuning and 
the necessity of automatic tuning, taking the example 
of a size 400x400 matrix multiplication computation. 
The histogram in Figure 7 shows the distribution of 
calculation speed obtained from all 16,129 tuning 

Prepared by the STFC based on Reference[9,17-25]

Figure 5 : Components of Numerical Simulation
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conditions in a 400×400 matrix multiplication, in 
which the number of results with the same calculation 
speed is counted. In this case, the highest calculation 
speed is 1459 MFLOPS, and there are peaks at 1300, 
1175 and 1100 MFLOPS in the histogram whose 
height indicates the number of tuning conditions with 
the same speed. This suggests that the optimal solution 
is not easily obtained, even if we define the evaluation 
function using calculation speed. Tuning conditions 
greatly vary the calculation speed, therefore there is 
a small peak near 600 MFLOPS, which is under half 
of the maximum calculation speed. We can obtain the 
optimal solution if we investigate the whole search 
space, but this results in large tuning calculation 
cost. Consequently, we need an automatic tuning 
method which efficiently finds conditions maximizing 
performance from a huge number of tuning condition 
candidates. 
   Software automatic tuning can be divided into 
the functions of static automatic tuning, dynamic 
automatic tuning, and advanced automatic tuning. 
These functions are used to create numerical 
calculation libraries and applications with automatic 
tuning functions. In developing automatic tuning 
functions, different development environments 

such as an integrated automatic tuning development 
environment, language extension etc. are required. 
Figure 8 shows these relationships. 
   According to the history of automatic tuning 
research and development, software automatic tuning 
was first applied to the parts of numerical calculation 
libraries depending on  hardware. This is now called 
static automatic tuning. Next, optimization considering 
property of input data was applied to numerical 
calculation. This is now called dynamic automatic 
tuning. Dynamic automatic tuning investigates the 
matrix size and distribution of nonzero elements, then 
automatically determines suitable tuning conditions 
in addition to the static tuning functions. In order to 
implement these dynamic automatic tuning functions, 
it was necessary to extend the specifications of the 
programming language (programming language 
extension) to a development environment. In order 
to archieve advanced automatic tuning, numerical 
optimization techniques and databases has been used, 
and the research is now in progress on constructing 
integrated development environments for automatic 
tuning software which includes verification of 
performance improvement. However, the scope of 
application is still limited to numerical calculation 

[NOTE 5] 
In linear equation systems and eigenvalue problems, sometimes it does not give numerical solution 
in which  iteration depends on the initial parameters and algorithms. Even in these cases, a numerical 
calculation library with automatic tuning functions is useful, because initial values and parameters are 
automatically adjusted.

Prepared by the STFC based on References[30-33]

Figure 6 : Outline of Software Automatic Tuning
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libraries, and there are expectations for progress in 
automatic tuning research which is also applicable 
to numerical simulations in addition to matrix 
calculations and signal processing.

4-2 Numerical Calculation Libraries with Automatic 
Tuning Functions

   Numerical simulations frequently use numerical 
calculation libraries for matrix calculations and 
signal processing. Operations executed by these 
numerical calculation libraries often cause bottlenecks 
decreasing performance. By incorporating automatic 
tuning functions into numerical calculation libraries 
for linear equation systems, eigenvalue problems, FFT, 
etc., the performance of numerical simulations can be 
improved. 
   Numerical calculation libraries with automatic 
tuning functions are also classified into numerical 
calculation libraries with static automatic tuning 

functions depending on hardware, and numerical 
calculation libraries with dynamic automatic tuning 
functions depending on input data. Characteristics of 
tuning techniques used in these numerical calculation 
libraries with automatic tuning functions are shown 
below.[NOTE 5]

(a) Numerical calculation library with static automatic 
tuning functions

• During installation, it evaluates the hardware 
configuration and performance such as the numbers 
of processor cores and data transfer rate, then 
adjust the parameters used in libraries to maximize 
performance.

(b) Numerical calculation library with dynamic 
automatic tuning functions

• According to the matrix size and distribution of 
nonzero elements in a sparse matrix, it selects the 
algorithms and calculation parameters for linear 
equation systems and eigenvalue problems.

Figure 7 : Relation between Automatic Tuning Conditions and Matrix Calculation Speeds
Prepared by the STFC based on References[40]

Figure 8 : Software Types and Software Automatic Tuning Functions
Prepared by the STFC based on References[30-33, 40, 42]
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Name Type Organization Functions

PHiPAC
(Portable High 
Performance ANSI C)

Dense matrix 
calculation

University of 
California, Berkeley, 
United States

Library automatically accelerating a matrix multiplication loop 
by adjusting to the hardware architecture. The code generator 
outputs multiple source codes which implement different tuning 
conditions, then   the fastest codes are automatically selected. 
Specifically, it improves memory access efficiency by using 
cache that introduces local variables. Moreover it improves 
execution efficiency by parallelization for independent codes 
using loop unlooling and elimination of conditional branches.

ATLAS
(Automatically Tuned 
Linear Algebra 
Software)

Dense matrix 
calculation

University of 
Tennessee,
United States

Matr ix calculat ion l ibrar y inc luding automat ic tuning 
functions that supports parts of BLAS (Basic Linear Algebra 
Subprograms) and LAPACK (Linear Algebra PACKage). It 
generates multiple programs with different block sizes which 
affects matrix calculation performance to adjust hardware. 
During library installation, it uses a timer to measure execution 
time and select an optimized program.

FFTW
(the Fastest Fourier 
Transform in the West)

Signal 
processing

Massachusetts 
Institute of 
Technology, 
United States

High speed Fourier transform library including automatic 
tuning functions which reduces memory access frequency 
and amount of calculations. In addition to the automatic tuning 
during installation, it executes run-time optimization based on 
the input data size. The parallelized library using MPI and  Cell 
B.E. implementation have been developed so far.

SPIRAL
(Software/Hardware 
Generation for DSP 
Algorithms)

Signal 
processing

Carnegie Mellon 
University, 
United States

Library containing automatic tuning functions for signal 
processing, such as FFT, DCT and Wavelet transforms.

OSKI
(Optimized Sparse 
Kernel Interface)

Sparse 
matrix 
calculation

University of 
California, Berkeley
Lawrence Livermore 
National Laboratory, 
United States

Automatic tuning library for sparse matrices developed by the 
BeBOP (Berkeley Benchmarking and Optimization Group). 
This can also handle parallel processing in combination with 
the PETSc numerical calculation library using MPI and BLAS.

ILIB
(Intelligent LIBrary)

Dense and 
sparse matrix 
calculation

University of Tokyo

Library for linear equation systems and eigenvalue problems 
using parallel algorithms. It selects a suitable algorithm based 
on the distribution of nonzero elements. It can be applied for 
both sparse and dense coefficient matrices. 

ABCLib
(Automatically 
Blocking and 
Communication-
adjustment Library)

Dense and 
sparse matrix 
calculation

University of Electro- 
Communications

Numerical calculation library for  parallel distributed systems. 
It implements automatic blocking which corresponds to cache 
size parameter tuning, and dynamic selection for optimal 
communication reflecting the input data.

Xabclib
(eXtended ABCLib)

Dense and 
sparse matrix 
calculation

University of Tokyo

Parallel automatic tuning library that extends ABCLib using 
OpenATLib. It suppor ts eigenvalue problems using the 
LANCZOS method, and linear equation systems using the 
GMRES method.

Table 1 : Numerical Calculation Libraries with Automatic Tuning Functions for which R&D is in progress

Prepared by the STFC based on References[32, 33, 38, 39, 43]

Figure 9 : Trends in Development of Numerical Calculation Libraries with Automatic Tuning Functions
Prepared by the STFC based on References[32, 33, 38, 39, 43]
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• Applies tuning techniques corresponding to 
dynamically allocated processors and number of 
cores.

   Figure 9 shows the history of developments of 
these numerical calculation libraries with automatic 
tuning functions, and predicted future developments. 
PHiPAC and ATLAS are libraries which implement 
static optimization for dense matrix calculations. The 
following are numerical calculation libraries with 
dynamic automatic tuning functions for parallel and 
distributed systems: FFTW and SPIRAL for signal 
processing, and OSKI, ILIB, ABCLib and Xabclib 
for matrix calculations. ILIB had been extended 
to ABCLib, and moreover its numerical algorithm 
selection during run-time and communications 
methods tuning were improved in Xabclib.[33] Table 
1 summarizes trends in development of numerical 
calculation libraries which focus on each automatic 
tuning function. As shown in Table 1, many research 
institutions tackle researches on numerical calculation 
libraries with these automatic tuning functions.
   In general, future research topics will be 
performance enhancement by improved optimization 
methods, and automatic tuning techniques for novel 
hardware architectures. Regarding heterogeneous 
parallel and distributed system which is considered as  
one of typical novel hardware architectures, research 
is still at the stage of manual tuning.[35,36] Thus 
progress from manual tuning into automatic tuning is 
expeceted.

4-3 Programming Language Extension and 
Integrated Development Environments for 
Automatic tuning

   As described above, in order to achieve dynamic 
automatic tuning functions, programming language 
extension is introduced for automatic tuning in 
existing programming languages. Moreover, for 
advanced automatic tuning, support tools including 
performance evaluation and analysis functions are 
used from integrated development environments. 
For once we write source code containing automatic 
tuning functions, we can easily improve performance 
corresponding to updated hardware such as a large 
scale parallel and distributed system. Consequently, it 
results benefits of reduced hardware dependency and 
improved software portability.
   Figure 10 shows the history of development of 
programming language extensions and integrated 
development environments for software automatic 
tuning, and forecasted future development 
trends.[31,33,40-43] Here, items with a * denote integrated 
development environments, and the others are 
prog ram ming lang uage extensions.  ROSE 
and Active Harmony are programming language 
extension tools which add performance measurement 
functions for automatic tuning into source code 
written in various programming languages. POET in 
combination with ROSE, and CHiLL in combination 
with Active Harmony, are integrated development 
environments which optimize various parameters 
of software automatic tuning. ABCLibScript 
provides a programming language extension 
with multiple functions for automatic tuning, but 

Figure 10 : Trends in Development of Programming Language Extension and Integrated 
Development Environments for Automatic Tuning

Prepared by the STFC based on References[31,34,41,42,44]

Extension of programming 
languages for automatic 
tuning

Enhance optimization 
of automatic tuning

OpenATLib
SPRAT

tuning of automatic tuning

research Topics
• Application to general 

numerical simulations
G li ft

FIBER
ABCLibScript

VisABCLib/ABCLibScript*

POET/ROSE*

• Generalize software
development using
automatic tuningActive Harmony

CHiLL/Active Harmony*

ROSE
POET/ROSE

20251995 2000 2005 2010 2015 2020 20251995 2000 2005 2010 2015 2020



62

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

applicable programming language is currently 
limited to FORTRAN, C language extension is now 
planned. VisABCLib is a software automatic tuning 
integrated development environment which handles 
ABCLibScript, with the special feature of advanced 
functions for visualizing software performance. 
SPRAT is a programming language extension that 
generates CUDA source code for GPUs and C++ 
source codes for multi-core CPUs, to achieve higher 
performance by automatically switching calculations 
between CPUs and GPUs corresponding to hardware 
performance.[34] 
   High performance numerical calculation libraries, 
such as matrix calculation and signal processing, 
have been developed using programming language 
extensions and integrated development environments 
for automatic tuning, but different issues remain in 
automatic tuning for general numerical simulations. 
For example, in simulations which describe interaction 
between f luids and rigid (or elastic) bodies and 
interaction in molecular dynamics, etc., conditional 

branches often appear in loop iteration, which cannot 
be handled sufficiently by automatic tuning techniques 
for high performance numerical calculation libraries. 
Consequently, software development based on 
automatic tuning for these general simulations will be 
a research topic.
   As shown in Table 2, many research institutions 
tackle research on both programming language 
extensions and integrated development environments.

New Moves towards Software 
Automatic Tuning Applications

   The history of software automatic tuning began 
from research on performance enhancement in 
numerical calculation libraries. Therefore it has 
focused on performance enhancement for numerical 
calculation libraries such as linear equation systems 
and eigenvalue problems, and applications to general 
numerical simulation software seem to be inactive 
so far. A problem is insufficient cooperation between 

Name Organization Functions

ROSE

Lawrence 
L ive r more  Nat i ona l 
L a b o r a t o r y , U n i t e d 
States

Programming language extension in order to convert source code written in 
FOTRAN, C, C++, OpenMP, and UPC. By using ROSE, it allows to implement 
automatic tuning for source codes written in various programming languages.

POET (Parameterized 
O p t i m i z a t i o n s  f o r 
Empirical Tuning)

University of Texas at 
Austin, United States

Integrated development environment which applies optimization techniques 
such as full search, simplex method, simulated annealing, genetic algorithms, 
etc. to parameter adjustment by automatic tuning. Used in combination with 
ROSE.

Active Harmony University of Maryland, 
United States

Programming language extension for automatic tuning for run-time software 
performance measurement and feedback.

CHiLL
University of Southern 
C a l i f o r n i a ,  U n i t e d 
States

Integrated development environment for automatic tuning with optimization 
techniques which adjust  parameters  by changing region correspoinding to 
simplex  in search space. Used in combination with Active Harmony.

FIBER (Framework 
of Install-time, Before 
E xecute - t ime,  and 
Run-time Auto-tuning)

University of Tokyo

Development framework for numerical calculation libraries with automatic tuning 
during installation, before execution and run-time. It supports the following 
automatic tuning techniques.

•During installation: Optimization of library to match target hardware.
•Before execution: Optimization depending on problems such as matrix size
•Run-time: Optimization considering distribution of nonzero elements in a sparse 
matrix, optimization of communication methods

ABCLibScript University of Electro- 
Communications

Programming language extension for automatic tuning specialized for 
numerical simulation. It automatically executes 3 tuning techniques: block width 
adjustment, algorithm selection, loop unrolling adjustment.
ABCLibCodeGen generates automatic tuning programs from source codes 
written in FORTRAN with additional ABCLibScript description. Then it repeats 
performance sampling, thereby an automatically tuned program can be 
obtained.

VizABCLib University of Electro- 
Communications

Programming support tool using ABCLibScript that has the following functions.
•Interactive display for automatic tuning code
•Generate a log in automatic tuning process
•Compare predicted performance and measured performance
•Systematic performance evaluation
•Database of information required in automatic tuning: calculation scheme, 

algorithms, etc.

SPRAT Tohoku University
Compiler generating both C++ program for CPU and CUDA program for GPU 
from source code written in a special programming language which does not 
depend on the CPU and GPU.

Table 2 : Characteristics of Automatic Tuning Programming Language Extensions and Integrated Development 
Environments on R&D in progress
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computer scientists who pursue software automatic 
tuning and researchers in various fields using 
numerical simulation. As an example of promoting 
such cooperation, in the Scientific Discovery through 
Advanced Computing (SciDAC-2) program by the 
Office of Science of the U.S. Department of Energy, 
there is the Performance Engineering Research 
Institute (PERI)[45] project which focuses on software 
performance engineering including automatic tuning. 
Their activities are described below.

   The background to launch PERI is as follows. 
In the SciDAC-1 program started in 2001, PERI’s 
predecessor the Performance Evaluation Research 
Center (PERC) project achieved  research works on 
benchmarking, analysis, performance modeling and 
optimization of numerical simulation programs for 
high performance computing, and their application 
to climate prediction models, plasma turbulence 
and accelerator simulations. From these research 
works and their applications, it makes the issues 
described in Section 2 clear. There are  obstacles to 
smooth progress in research in which software must 
be rewritten for novel hardware because hardware 
lifetime is shorter than software lifetime. Problems 
between both types of researchers were also pointed 

out: researchers using numerical simulation do not 
provide information on portability of source code, on 
the other hand, computer scientist are not interested in 
tools to port developed software. While considering 
these problems, the PERI project was begun as a 
successor project to PERC.
   Currently, both the SciDAC program and INCITE 
(Innovative and Novel Computational Impact on 
Theory and Experiment) program are included in the 
Advanced Scientific Computing Research (ASCR) 
program by the Office of Science, Department of 
Energy in the U.S. SciDAC-2 is a program which 
focuses on software fundamental technology in high 
performance computing. On the other hand, INCITE 
program mainly provides high performance hardware 
and computing resources for numerical simulations.

5-1 SciDAC-2 Research on Fundamental Software 
for Numerical Simulation

   As shown in Figure 11, SciDAC-2 is broadly 
grouped into 3 organizations in charge of Research on 
fundamental technologies, Application of fundamental 
technologies, and Scientific applications. Table 3 
shows each project and research topics of SciDAC-2 
in 2009. It is a notable aspect that Outreach Center 
in SciDAC-2 which acts as a support organization 

Figure 11 : Components of the SciDAC-2 Program including PERI Project
Prepared by the STFC based on References[45]
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for disclosure of research results, etc. In addition to 
publishing project information, this Outreach Center 
plays important roles, such as user support and 
training, and active promotion for building up closer 
connections between projects. 

5-2 Research on Sof tware Per formance 
Engineering in PERI Program

(1) Roles of PERI
   As part of the SciDAC-2 program, a goal of PERI  
is to provide software development technology for 
high performance computing to numerical simulation 
research in other projects. PERI is in charge of the 

following R&D.
•Performance modeling for numerical simulations
•Accurately predict the execution speed which can be 

obtained from developed software.
•Software automatic tuning R&D
•Set highly difficult long term research targets for 

reducing the researchers’ programming burdens.
•Application R&D
•Apply research works in PERI to numerical 

simulations in other R&D projects in SciDAC-2.

(2) PERI’s Organization and Operation
   Looking at PERI’s organization and operation, it 

Abbreviation of 
organization Organization name Topics

CACAPES
Combinatorial Scientific 
Computing and Petascale 
Simulations Institute

Load balancing for parallel computing, automatic differentiation, sparse 
matrix calculation

PDSI Petascale Data Storage 
Institute

Specifications, standards, algorithms, and performance measurement tool 
development focused on data storage

PERI Performance Engineering 
Research Institute

Software performance engineering:
software performance modeling, performance prediction, software 
automatic tuning, applications

ULTRAVIS Institute for Ultra-Scale 
Visualization

Development of visualization tools for extracting potential information from 
huge data sets

APDEC Applied Partial Differential 
Equations Center Algorithms and software framework for partial differential equations

CEDPS Center for Enabling Distributed 
Petascale Science

High reliable and high performance data transfer mechanism and resource 
allocation and virtualized environment on grid

CScADS
Center for Scalable 
Application Development 
Software

Petascale computing platform, communication library, mathematical 
library, open source compiler

ESG Earth System Grid Center for 
Enabled Technologies

Data creation for next generation simulation integrating the atmosphere, 
sea and land for climate and weather forecasts

ITAPS
Interoperable Technologies 
for Advanced Petascale 
Simulations Center

Mutual use of SciDAC applications, and compatible data manipulation 
tools for mesh, geometry, etc.

Outreach Outreach Center Share information among projects, support services, training, transfer of 
SciDAC research results to new organizations

SDM Scientific Data Management 
Center

Science and technology computing workflow automation, data mining, 
data analysis, efficient access to storage

TASCS
Center for Technology 
for Advanced Scientific 
Component Software

Develop component software  for parallel simulations, hardware and 
software  to improve quality, robustness, dynamic adaptability, and 
usability. 

TOPS Towards Optimal Petascale 
Simulations R&D to solve bottlenecks of scalable solvers and applications

VACET
Visualization and Analytics 
Center for Enabling 
Technologies

R&D on data visualization and analysis software

Material 
science,
Chemistry

Petascale computational chemistry and material modeling, quantum 
simulation of nanostructures, crack analysis under stress, chemical 
reactions and interactions in fluids

Life science
Impacts of microbes and 
bacteria on environment. 
Energy generation.

Hydrogen generation, bioethanol and energy generation from microbes

Climate Climate and weather
Successive, dynamic and adaptive  grid computing for physical and 
chemical models of earth climate, cloud modeling and its validation, 
improvement of global climate model, and atmosphere model.

Fusion energy Alternative clean energy Turbulence analysis for plasma fusion

Groundwater Model for contaminant dispersion by groundwater and geometric, 
biological and chemical model of underground

Physics Subatomic particles, nuclear energy, astrophysics, turbulence analysis of 
shock waves, open science grid
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Organization Topics

Argonne National 

Laboratory

Service infrastructure software quality enhancement for numerical simulations (in cooperation with TASCS).
Software performance databases: interface extension and addition of simple interface for application 
developers.
Definition and component implementation of interface to automate learning in automatic tuning.
Infrastructure to share hardware performance database among applications.
Performance analysis interface extension using PerfExplorer.
Making more robust analysis component prototype based on machine learning (in cooperation with University 
of Oregon).
FLASH application performance evaluations on Argonne National Laboratory’s Blue Gene/P and Oak Ridge 
National Laboratory’s Cray XT3.

Lawrence Berkeley 
National Laboratory

PERI project management.
Check progress of PERI and fundamental technology research organizations.
Analysis processing of plasma turbulence analysis team.
Quantum calculation software tuning of material simulations for new solar cells.
Development and testing of automatic tuning functions for applications on multi-core processors.

Lawrence 
Livermore National 
Laboratory

Empirical tuning using POET, which is a tool for automatic tuning.
Continue survey of software performance evaluation, especially cross-platform models.
Coordinate with PERI researchers of other organizations and integrate various performance prediction tools.
Application of software automatic tuning and performance prediction tools to SciDAC applications.
Generate models showing activity of MPI applications.
Extension of MPI tracing mechanism which measures communication patterns.
Implementation of functions which measure performance distribution of MPI events.
Survey of advanced techniques for ideal tracing including timestamps.
Promote activities of performance enhancement verification teams.

Oak Ridge National 
Laboratory

Continue development of interconnect simulator for network topology and routing settings, which is required 
by the teams verifying performance enhancement.
Comparison of models and simulation results for performance measurement in large scale systems.
Improve accuracy of models which identify scaling bottlenecks.
Support joint research for applications in climate and weather, fusion, material science, and groundwater.
Promote application of PERI’s research results.
Promote cooperation with projects outside SciDAC.

North Carolina 
State University

Continue support for joint research of application teams, analyze performance and optimize on Cray XT4 and 
BlueGene/P.
Continue to support communication of application teams with PETSc developers and users, and improve I/O 
and user routines.

Rice University

Continue joint work with Cray and IBM to solve problems of performance sampling using hardware counter 
function of OS.
Introduce HPCToolkit at the stage after OS problems are fixed.
Continue to work on extension of path profiling function of optimization code of HPCToolkit.
Continue to work on extension of performance analysis techniques for OpenMP and MPI+OpenMP programs.
Coordinate with SciDAC and INCITE application teams.

University of 
California, 
San Diego

α testing of network simulator.
β release of network simulator.
Basic R&D for memory tracing estimation in large scale data and processor systems.

University of 
Maryland

Integration of automatic tuning framework including an empirical search function.
Complete integration of Active Harmony with the ChiLL framework, and start evaluation.
Development of PERI-DB search API.
Support for performance enhancement verification teams.

University of 
Oregon

Continue support for performance measurement and analysis of petascale applications.
Continue performance measurement and fluid analysis and plasma turbulence analysis applications of 
performance enhancement verification teams.
Continue integration of performance database with PERI-DB group.
Use PerfExplorer in data analysis of performance enhancement verification teams.

University of 
Southern California

Management of entire PERI project.
Continue API development for automatic tuning users.
Research to determine specifications related to automatic tuning and ChiLL.
Coordinate with SciDAC and INCITE application teams.
R&D on data copying libraries (cooperate with University of Utah).
Continue integrating Active Harmony with ChiLL (joint research with University of Maryland and University of 
Utah).

University of 
Tennessee at 
Knoxville

Continue development of cross-platform performance counter library which supports PERI performance 
modeling and automatic tuning.
Research on empirical search techniques for automatic tuning, and integration with PERI automatic tuning 
framework.
Research on optimization techniques for multi-core architectures, and integration with PERI automatic tuning 
framework.
Cooperate in building database of performance enhancement verification teams.

University of Utah

Drive the PERI automatic tuning groups, make reports with external joint researchers, and coordinate poster 
presentations and paper publications.
Introduce thread mechanisms in automatic tuning compiler technology.
Develop of data compiler library (joint research with University of Southern California)
Continue to integrate Active Harmony with Chill (cooperate with University of Southern California and 
University of Maryland).
Work to build a stable release of CHiLL (cooperate with University of Southern California).

Table 4 : Participating Organizations in PERI and Topics

Prepared by the STFC based on References[46
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is noteworthy that they form and operate a highly 
productive organization based on comprehensive 
understanding of the components in numerical 
simulations as shown in Figure 5, focused on R&D 
in software performance engineering for software 
fundamental technologies. Specifically, it works 
to share R&D goals, and to build up a connection 
between each fundamental research and applied R&D. 
As a result, PERI seems to be excellent at quickly 
removing obstacles on the way to practical use.

   As shown in Figure 11, PERI contains groups being 
in charge of software performance engineering, 
and groups supporting joint research on numerical 
simulation applications etc. Table 4 shows the topics 
assigned to 4 national laboratories and 8 universities. 
In addition to each project’s R&D, it is noteworthy 
that they work on coordination with other projects 
in PERI, SciDAC-2, INCITE, etc. In supporting 
organizations for joint research, there are plasma 
fusion simulation applications (GTC), fluid simulations 
(S3D), performance database building, and liaison for 
joint research with other projects. Note that the liaison 
group members are also members of groups being in 
charge of software performance engineering.
   A meeting of all PERI groups is held each year, 
and biweekly telephone conferences are held for 
close coordination. It is also publicly decided that 
unscheduled meetings are held Monday mornings. 
Moreover, limited resources are focused on important 
SciDAC-2 projects, and they take care not to change 
a research organization for general computer science 
and mathematics which are unrelated to software 
performance engineering. In this way, efficient 
research management is performed, and in order 
to smoothly apply research results to numerical 
simulations, Outreach Center supporting SciDAC-2 
projects and liaison within PERI play important roles.

Issues for Research Promotion in 
Japan

   As described above, there is a steady increase in 
numerical simulations on parallel distributed systems 
using commodity processors, but it is extremely 
difficult to develop software for high performance 
computing which makes full use of hardware 
performance. This is why software fundamental 
technology with automatic tuning technology as 

the core is playing an important role in software 
development for high performance computing. 
Especially for heterogeneous parallel distributed 
systems, tuning itself is at a research stage before 
automation, and there is a need to advance research 
which aims at practical use of automatic tuning.
   In Japan, researchers in numerical computing who 
belong to universities and companies have launched 
the Automatic Tuning Research Group. They 
reported a survey of automatic tuning technology[48] 
and created a specification of Application Program 
Interface (API) in the OpenATLib automatic tuning 
library and programming language extension. Also, 
the Automatic Tuning Research Group has held the 
International Workshop on Automatic Performance 
Tuning (iWAPT) since 2006, which is also attracting 
the attention of overseas researchers.
   The research works in Japan at a level similar 
to in the U.S., but issues remain its promotion. A 
roadmap from research to practical use in numerical 
simulations, resource allocation and sharing among 
researchers are insufficient in Japan, because the 
promotion organization consists of the researchers 
themselves. Especially for R&D on software 
fundamental technologies at universities and research 
institutes, it may be most efficient to pursue research 
and applications in parallel with overlook of the 
related projects, like SciDAC-2 and its PERI in the U.S. 
We hope to reconsider of research management in 
research organizations in Japan, in order to efficiently 
drive fundamental technology research and applied 
research.
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ABCLib: Automatically Blocking and Communication-adjustment Library 
APDEC: Applied Partial Differential Equations Center 
ASCR: Advanced Scientific Computing Research 
ATLAS: Automatically Tuned Linear Algebra Software 
CACAPES: Combinatorial Scientific Computing and Petascale Simulations Institute 
CEDPS: Center for Enabling Distributed Petascale Science 
CScADS: Center for Scalable Application Development Software 
ESG: Earth System Grid Center for Enabled Technologies 
FFT: Fast Fourier Transform 
FFTW: the Fastest Fourier Transform in the West 
FIBER: Framework of Install-time Before Execute-time, and Run-time auto-tuning 
GPU: Graphics Processing Unit 
GTC: Gyrokinetic Turbulence Code 
HPC: High Performance Computing 
ILIB: Intelligent Library 
INCITE: Innovative and Novel Computational Impact on Theory and Experiment 
ITAPS: Interoperable Technologies for Advanced Petascale Simulations Center 
iWapt: International Workshop on Automatic Performance Tuning 
OSKI: Optimized Sparse Kernel Interface 
PARATEC: Parallel Total Energy Code
PDSI: Petascale Data Storage Institute
PHiPAC: Portable High Performance ANSI C
PERC: Performance Evaluation Research Center
PERI: Performance Engineering Research Institute
SciDAC: Scientific Discovery through Advanced Computing 
SDK: Software Development Kit 
SDM: Scientific Data Management Center 
SPIRAL: Software/Hardware Generation for DSP algorithms 
TASCS: Center for Technology for Advanced Scientific Component Software 
TOPS: Towards Optimal Petascale Simulations 
ULTRAVIS: Institute for Ultra-Scale Visualization 
VACET: Visualization and Analytics Center for Enabling Technologies 
Xabclib: eXtended ABCLib
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