
34

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

2

Technical Trends and Challenges of Software Testing

TOSHIAKI KUROKAWA
MASATO SHINAGAWA

Affiliated Fellow

1 Introduction

   Software tests are (herein referred to as software 
testing) commonly known as “a test to verify 
if there is no problem with software”. Software 
testing, in this sense, may seem to be similar to 
tests of various “artifacts (products)” such as ones 
to check the safety of confectioneries, whether 
batteries are produced as specified, or whether an 
aircraft has any problems concerning its flight. In 
fact, many problems have been revealed concerning 
inspections and testing of these products in recent 
years.
   On the other hand, unlike such tangible products, 
software would have different types of problems 
because problems in software are hard to see by 
users until such problems actually are visualized by 
a series of defects. In the case of tangible products, 
you may notice some indication before the serious 
problem occurs. In other words, unless the certain 
conditions are tested for the defects, the software is 
considered and treated to be at normal state, or “no 
problem”.  In a more extreme statement, it can be 
said that problems attributed to software are caused 
by insufficiency of its testing.  
   Recent software related problems are largely 
caused by lack of testing, and have actually 
brought social problems and financial losses.  
For example, there was a failure with the New 
Derivation Trading System, which deals with 
derivative products, of Tokyo Stock Exchange 
on February 8, 2008. Due to this problem, the 
trading system operation have been suspended 
until the 12th of the month.  The reported reason 
of the failure was an “initialization error with the 
memory within the server, and no initialization 
were conducted under a certain condition”.[1] While 

this system was originally planned to be in effect 
from October 2007, testing showed that there were 
numerous problems.  Therefore, the operation of 
the system was delayed for 3 months, and it started 
to be in use from January 15, 2008. The Tokyo 
Stock Exchange also had an accident in November 
2005, in which their system failed and all stock 
exchanges were suspended.
   In 2007, there was also an inconvenience with 
the automatic gate system at train stations in and 
around the Tokyo metropolis.  There have been 
many reports and opinions on this issue.[2-5] For 
example, a TV program reported that it was caused 
by a comparatively simple error (“+offset” was 
missing). In this case, the bug was not noticed 
until a certain condition is met. Once this condition 
occurred, it  caused errors to all connected 
automatic gate machines.  In addition, as this error 
affected the entire rail industry of the metropolis 
area, it was reported as a significant social problem 
with several million people suffered. Such events 
should not happen if some test were conducted to 
check these specific conditions of this accident. 
It was told that only such limited number of tests 
were conducted for big numbers as 1000, 5000 and 
10000, so they missed the special case relating to 
the buffer which caused failures.  
   Due  to  the  increas ing  complexi ty  and 
proliferation of software, the importance of tests is 
increasing. However, the difficulties of testing are 
also increasing. There have been various attempts 
to solve these software testing problems. Recent 
trends in software testing have been frequently 
reported in technical community.[6] For instance, a 
group for testing security software products named 
Anti-Malware Testing Standards Organization 
(AMTSO) was formed on February 5, 2008. As 
malware  has become more diverse and products 



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

35

2

has become more complex, the appropriate 
evaluation of the tests for current security software 
had become difficult.  This organization is to 
improve testing methods and appeal the practical 
standards and guidelines to the world.
   In this report, first, the meaning of software 
testing will be made clearer, especially for the so-
called “embedded systems”, so that the testing 
becomes important for the technology related to 
the safety and security of citizens. Next, the testing 
technologies are sketched, and the emergence 
of companies and organizations specialized in 
software testing is reported.  As the biggest issue 
of software testing, this paper reports the current 
treatments of software test designers and engineers, 
as well as the current state of their education.  
The development of a quality assurance industry 
based on software testing technology is discussed 
along with the evaluation of software quality and 
social/legal systems for software quality. We also 
need innovations to make all of these issues more 
commonly understood by general public. This 
paper summarizes that the efforts to overcome such 
challenges would contribute to create a “quality” 
industry in a long run. 

Tes ts  in  over -a l l  so f tware 
d e v e l o p m e n t  p r o c e s s e s – 
differentiation from debugging –

   In traditional software engineering, software 
testing was not emphasized much, compared to 
other parts, partly because people did not recognize 
the differences between software testing and 
program debugging as described below. 
   Software program failures itself may have been 
seen even in the early days of programming.  
Efforts to eliminate failures are called debugging 
since such failures in programs are called bugs. 
While software tests are related to debugging, 
they should be considered as a separate task from 
debugging. This idea was also emphasized in the 
“Art of Software Testing” by Myers (published 
in 1979), which is said to be the classic book on 
software testing.[7]

   The differences between debugging and software 
testing may be summarized as shown in Table 1. 
Although both debugging and testing have the 
common goal of quality advancement, debugging 

aims to eliminate bugs of programs while testing 
is to identify any defects in the whole program 
including the system aspects where programs are 
used. Therefore, it should be noted that these two 
tasks are completely different in nature. 
   For example, even if there are no bugs in a 
program, defects may be found by testing.  In other 
words, debugging is to identify whether a program 
satisfies the predetermined specifications, while 
testing is to identify any inconvenience for users of 
the program.
   Here is an example outside areas from software. 
Suppose some users may put “waterproof” products 
into the ocean or bath with some chemicals put as 
bath agents.  In these situations, the product needs 
to not only be waterproof against regular water, but 
also to have certain durability against salt or other 
chemicals. It is hardly said to be “waterproof” from 
the users’ viewpoint, that only the regular water is 
permitted. 
   Defects identified by debugging are attributed 
to cases that logic of an intended program was 
not achieved with the actual program, or there are 
mistakes in contents. On the other hand, system 
failures to be identified by software testing are 
inconvenience or risk for users so that the software 
should be designed and made to prevent such 
problems.
   Buggy programs are written by the lack of skills 
of the programmer, and the improving individual 
programming skills is the responsibility of the 
programmer.  If software testing were considered 
to be a process for debugging, programmers must 
be in charge of software testing, which is not a 
good practice. Putting programmers for testing may 
eventually lead to a higher risk of overseeing bugs 
undetected.  
   As an empirical rule in software engineering, 
there should be at least some bugs unfound for 
years in large programs with over ten-thousand 
lines.  Even new bugs (sometimes even crucial 
ones) could be introduced during the program 
upgrading (or debugging) tasks. In lengthy and 
large-scale programs, it is important to conduct 
software testing from the viewpoint of fail-safe, 
that is to prevent the system from being damaged 
significantly or critically even though some bugs 
are remained and they are hit to do critically 
damaging function. 



36

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

Definition and contents of current 
software testing

   There are still confusions in definitions of 
software testing. According to [8], software testing 
is commonly known as a test to evaluate and then 
guarantee the level of quality of software, or to 
verify if there are no risks.  With this definition, 
software testing needs to be started from the 
upstream operations of software development.
   According to the standard which stipulates the 
life cycle of software, JIS X 0160:1996(software 
lifecycle process), the test is broken down into the 
3 phases.[9]

[1] System and software qualification confirmation 
tests for the development process.

[2] Operation tests for the operation process
[3] Quality assurance process, verification process 

and validation process that include testing as 
part of the lifecycle supporting processes.

   In addition, the standard for system lifecycles, 
JIS X 0170, which includes not only software but 
also hardware systems, addresses a task called 
software testing in the processes of verification and 
validation.[10]

   As stated in the Science and Technology Trends 
No.11, April 2004 “Toward the Improvement of 
Quality and Reliability in Information System 
Construction− A Study of “Business Rules” 
and Requirements Engineering in the Upstream 
Process”,[11] quality assurance activities are 
imperative in the upstream process to enhance 
quality and reliability of a system, or in the “super 
upstream operations”, coined by the Software 

Engineering Center (SEC) of the Information 
Processing Association (IPA), Japan. It is necessary 
to investigate the testability from the upstream 
operations of requirements specifications, not 
only to check if the users’ needs are met, but also 
to see how the tests will be effectively done. In 
other words, the quality assurance process should 
start from the point in the upstream process where 
demands and requirements are studied, where the 
person in charge of the test must participate from 
the start.
   Moreover, as introduced in the Science and 
Technology Trends 2004 September “ T he 
Two  R a t ion a l i t ie s  a nd  Japa n’s  Sof t wa re 
Engineering”,[13] the methodology, known as Agile 
Development, of making a test program as the 
first step in program creation, has been promoted 
a new way of program development. Kent Beck, 
one of the advocates of Agile Development, has 
proposed a system called Test Driven Development 
(TDD), in which the software development itself 
is constructed around the testing.[14] Furthermore, 
Hayashi and others have proposed a system where 
TDD is employed at the modeling stage before the 
actual program development.[15]

   Some says that the software testing process 
would be unnecessary if it is possible to create 
high-quality bug-free software. However, if user 
“demand” is taken into consideration in the first 
place, these demands will change depending on the 
time and environment. Therefore, it is important 
to understand that there is no such thing as “with 
absolutely no faults”.[11] Secondly as history and 
experiences tell, it is very difficult to design and 
implement software with no faults or hidden bugs, 
even if the best developers/designers/programmers 
are gathered for the process. Consequently, it must 

3

Debugging Testing

Purpose Eliminate bugs Ev a l u a t e  q u a l i t y  r i s k s  a n d 
guarantee an expected quality

Subject Program System (including software)
Work Correct faults Identify faults
Worker Programmer Test engineer

Start After writing a program
A test plan is created from 
the phase of requirements 
specifications

End (None = eternity) Judgment of the person in charge 
of testing

Table 1 : Difference of debugging and software test

Prepared by the STFC



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

37

be understood that testing is an inevitable process.
   Furthermore, software testing defined as a 
process of quality assurance or verification of risk-
free quality is different from debugging so that 
it does not expect a perfect program without any 
failures of components. Rather, software testing 
should be effective to prevent critical damages 
on the whole system for users, by taking into 
consideration of potential failures of the program 
and its environments. 

Importance of software tests for 
embedded system software

   In particular, importance of software test is 
currently recognized in an area called embedded 
systems or embedded software. In this area, the 
users have no sense of using software, which 
is quite different from such areas of personal 
computer OS and word processors. Embedded 
software is embedded in a mechanical system, 
where the software supports the mechanical 
function.
   In the past when computers were not easily 
affordable, embedded software system was only 
used for very special systems such as APOLLO 
aerospace ship or nuclear reactor control. However, 
with the decline of prices of computers and 
proliferation of microprocessors, the trend has 
changed to use the microprocessors for various 
machines, which also expanded the areas of 
embedded software usages. Currently, such 
embedded software would be used in most of 
mechanical products. For instance, an automobile 
has some dozens of microprocessors, and the total 
number of programs of its embedded software 
exceeds 10 million lines.[16-18] Embedded systems 
are widely proliferated in a rapid pace. Its business 
scale in Japan reached 62 trillion yen, or 12% 
of the gross national products.[19] According to 
this METI report, the number of employees of 
embedded system companies are more than 4.71 
million, which accounts for 9% of the total workers 
in Japan.
   The business scale is something, but the 
implication for the quality of the product is 
more important which greatly affect the quality 
of life of general public. From this viewpoint, 
embedded system software currently gains a lot 

of attention. Any failure of embedded software 
could lead a significant problem on users, as stated 
in the example of automatic ticket gate machine 
failure which was far more than expected by the 
responsible parties. Failures of mobile phones 
would require a tremendous amount of costs 
for recall and replacement of defect products. 
Embedded software testing becomes more 
important than that of enterprise information 
system. Some companies have emerged with the 
expertise of embedded software testing and are 
increasing their sales. 
   The designer of embedded systems should have 
expertise of both hardware and software. Failures 
of the system may be caused by both hardware 
and software so that it is necessary to test both, not 
either one.
   The popularization of Internet and integration 
of various corporate information systems have 
a dangerous implication that even conventional 
information systems to affect various aspects in our 
society. In other words, corporate systems come 
to be treated as important as embedded systems 
for general public. Even one system failure of 
a company could lead a serious inconvenience 
to our society.  An example is software viruses. 
There is a possibility that all people are affected 
severely by destructive viruses with the failure that 
an individual or a company fails to take anti-virus 
measures.

Recent trend of software test 
technologies

   There are various types of software tests 
available thanks to the accumulation of its 
research and development activities. These are 
categorized depending on testing environment, 
testing objectives and purposes, testing methods, 
and the means of testing. Nomenclatures and 
definitions for the testing types may slightly vary 
in the textbooks listed in Reference.[20-22] Readers 
can consult software test technologies and methods 
described in these textbooks and references. This 
report describes recent topics. 

5-1   Links between test process and software 
development process

   Traditionally, software testing are considered to 

4

5



38

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

be a V-shaped model as shown in Figure 1, because 
the test is conducted after software development. 
Consequently, failures are detected and corrected 
only after software development. Therefore, 
defects in the upper stream cannot be remedied 
until the end point of testing, which led an increase 
of workload for correction.
   In the testing phase, traditional focus have 
been the increase of numbers of tests, which may 
not bring effective results to solve problems in 

software. One of the software testing methods 
developed in Japan is HAYST Method.[23] This is 
a method based on a scientific test plan method, 
which is to to implement effective testing in 
advance. 
   Quality engineering tells that quality should be 
incorporated in the upstream process. This means 
that upstream process needs testing for quality. 
Recently, the W-shaped model as shown in Figure 
2 supersedes the traditional V-shaped model. The 

Figure 1 : V-shaped model of development and test (conventional)
Prepared by the STFC

Figure 2 :The “W”-shaped model for software development and tests (the most recent model)
Prepared by the STFC

Requirement 
specification

Detailed design

Basic design

Specification design

System test
Regression test

Implementation Code inspection

Single unit test

Comprehensive test

Integrated 
test

Function test

System  test

Function test

Requirement design

Specification
design

Basic  design

Detailed
design

Single unit test 
design

Integrated test design

Function test design

System test design

Integrated 
test

Single unit 
test

Coding



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

39

Figure 2 :The “W”-shaped model for software development and tests (the most recent model)

two large downward arrows in the left of Figure 
2 represent a waterfall development of traditional 
software development, which was referred as a linear 
development in “Information and Communications 
Technology and Shiso – Shiso as a Capability for 
Science and Technology”.[24] However, horizontal 
arrows indicate that test designs will be conducted 
with the development in each phase. Even the 
pre-development requirements phase will be 
accompanied the system test design and testability 
consideration. While the system test itself will be 
conducted in the final phase, the test design and 
testability investigation may correct failures in the 
upstream. 
   The W-shaped model creates a test program in 
line with the program design in the same manner 
of Agile Development Method. However, while 
Agile Method requires programmers who write 
a program would conduct the test, the W-shaped 
model assigns test engineers, not programmers to 
do the test. 
   Some idealist claims that in the future, special 
quality software could be produced which could 
avoid testing. However, it is impossible to omit a 
test for any products or systems today, and most 
likely even in the future we still need testing. 
Moreover, software is growing further complicated 
and larger in scale, and it becomes more difficult 
to create a perfect flawless program. Hence, it is 
crucial to manage software risks by the effective 
tests of the existing and under development 
software. If we extend the principle of “testing 
accompanies with development” to the principle 
of “test is created before development, and 
development should proceed to satisfy the test”, 
it will produce the framework of the test driven 
development methodology (TDD) described in 
Chapter 3. 
   Since the software is invisible, it would be 
effective to apply requirement testability and TDD 
for the software development. These methods 
can be applied for software in a wider sense, 
such as laws and regulations.  Industrial efforts 
for “visualization” and “performance evaluation” 
can be an indication for the effectiveness of these 
testability/test-driven approach. 

5-2     Static test
   Software tests employ static and dynamic 

techniques. Dynamic test is to execute a program 
and analyze the results.  The static test is to analyze 
a program text without executing a program. “Test”
section in “Guide to the Software Engineering 
Body of Knowledge”[25] refers to dynamic 
techniques, while the static testing is categorized 
in “Verification and Validation” section. However, 
other software test textbooks include the static 
test in the part of testing.  The static test includes 
human-based activities such as “review” and 
“inspection” as well as computer-based analysis 
and data processing such as “metrics”, “coding 
rule inspection”, “static analysis” and “model 
checking”. While the dynamic test can be done 
without special knowledge, the static test can only 
be performed by specialists. Its advantage lies in its 
prompt feedback to the development team because 
it is done in the midst of development process 
rather than after the development. Static test can 
improve development process and human abilities.
   In terms of quality improvement of system 
development, it is necessary and efficient to ensure 
the quality in the upstream process.[11] This is also 
true for software testing. A method called “model 
checking” now gains a keen attention in a design 
phase.[26] The model checking is especially useful 
for the time critical system which is difficult with 
dynamic testing technique. The model checking 
does not test software itself but build a model of 
the system and test the model using a verifier. 
The system including hardware and software is 
represented as a state transition machine with 
temporal logic. There are skeptical opinions 
whether it is appropriate to include model checking 
in the software test technology, Not many software 
testing textbooks include model checking. While 
this technology has a long history as an automatic 
Theorem Proving or mechanical proving method, 
various tools have been developed recently and 
effectively used. SPIN[27] is the most widely used 
tool. 

5-3     Automation of software test
   In general, the workload of software test would 
increase exponentially with software size.  This is 
because when the number of conditions increases, 
the number of necessary tests also increases. To 
overcome this issue, it is natural to adopt the 
automation of tests with the accompanying quality 



40

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

and efficiency. The following methods are available 
for software test automation. 

-   Automatic generation of input load such as load 
tests on the Internet

-   Automation of tests by test script languages such 
as TTCN-3

-  Automatic generation of test cases using UTP 
(UML Testing Profile) etc.

   On the other hand, there are critical opinions 
against the introduction of automation tools.[28] 
This is because the ad-hoc automation or random 
introduction of test tools produced confusions. 
In order to succeed in automating a system, an 
adequate and enough preparation is needed such as 
to develop human resource of skilled engineers and 
to nurture the necessary environments to produce 
successful results.

Software test industry

   Increased importance and workload of software 
tests has let some companies to outsource the 
testing activities to other companies. This is 
mainly because it is required (1) to decrease the 
cost related to testing, (2) to adjust manpower in 
a limited time frame and (3) to get specialized 
knowledge and skills in testing from outside.  In 
particular, the number of test required for recent 
embedded systems has become enormous, so 
companies tend to rely further on outsourcing. 
With this circumstances, IT Verification Industry 
Association (IVIA)[29] was established in Japan in 
2005, which has 47 member companies as of March 
2008.  IVIA has divisions such as Technology, 
Standardization, Education/Training and Alliance 
etc., and especially puts their efforts on the skill 
certifications for test engineers. According to IVIA, 
the companies in test industries reached around 
1000, and 100million yen sales. They view this 
industry has a strong potential of growth.
   While it is true in software development in 
general in Japan that test engineers of large 
companies has more skills than those who are 
individual contractors or of small and mid-sized 
companies, large organizations tend to treat 
tests as lower class than planning, development, 
manufacturing or sales so that newly-hired or 

temporary/extra workers are considered to be 
enough for testing. Moreover, even a test period 
could be significantly shortened to compensate the 
delay of development, which represents a distorted 
situation that the local politics gains precedence 
over the fulfillment of testing activities which has 
an overall importance for quality. This is another 
reason to bring the birth of test industry.
   This movement of independent test industry 
happens not only in Japan but in India where 
software industries is booming as a major national 
business. For instance, an Indian company 
specialized in software testing named STAG 
has their office in Japan and the United States. 
Infosys, the largest software company in India has 
Independent Validation Center (IVC). This is an 
individual organization within the company with 
3000 employees and rapidly growing. IVC has 
Chinese Walls for software that is developed by 
Infosys.
   These testing companies and organizations have 
increased because the software usage has increased 
and the companies who try to use the software are 
not able to afford personnel to test the software. In 
the current circumstance where new technologies 
are introduced every month while software gets 
more complicated, it is more effective to employ 
specialized companies or organization to do the 
testing job in terms of cost, work period and quality. 
Infosys IVC is capable of maintaining a knowledge 
base to evaluate requirement specification 
according to its development schedule, work items 
and expected results. Specialized companies are 
able to use their experiences based on many actual 
cases, so that their know-how could be utilized by 
outside companies.

Education of test engineers and 
designers

   The needs of highly skilled IT personnel have 
been discussed in many occasions for the past few 
years. However, these discussions have not come 
to the need for personnel for software test yet.[18]

   In fact, the needs of software test specialists have 
been discussed by concerned parties for years. 
However, very little attempt has been conducted by 
universities or colleges to have a special course on 
software testing.  In the reference[21] published in 

6

7



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

41

1999, no student has got software test course and 
the situation was regarded as hopeless.
   In Japan, IVIA, the software test company 
association as mentioned earlier, and other Non 
Profit Organizations have been providing a 
certification for software test skills. One of the 
most representative organizations is Association 
of Test EngineeRing (ASTER) established in 
April 2006. ASTER holds an annual software test 
symposium called JaSST to encourage technical 
and human development in the field of software 
testing. 
   There is a world-wide organization named 
International Software Testing Qualifications Board 
(ISTQB) supporting skill certification for software 
test engineers.[31] According to its website, 39 
member countries are participating including Japan 
as of February 2008. ISTQB’s member organization, 
called Japan Software Testing Qualif ications 
Board (JSTQB) provides certification for software 
test engineers.[32] The website of JSTQB shows 
the data about the number of certified engineers 
in 20 member countries and regions. It shows 
that there are about 24,000 certified engineers 
in the world and more than 1000 in Japan. 
Information-Technology Promotion Agency, Japan 
(IPA) has developed ITSS (IT skill standard) 
and ETSS (embedded software skill standard). 
ITSS  “systematically summarizes abilities/skills 
required to provide various IT related services, 
and to provide a scale (common framework) 
effective to measure the level of performance 
of IT service professionals in the academia and 
industries”. ETSS aims to “enhance the human 
ability for embedded software development and to 
develop mechanisms to achieve human resource 
development and exploitation for embedded 
software development”. 
   ITSS was originally developed in 2002, and has 
“testing skill” in its skill item for system, database, 
network and other function skills required for IT 
specialists. For application specialists, “testing 
skill” is found among the required methodology 
for software engineering. However, there is no job 
category for testing specialists. In the job category 
of consultant or IT architect, no testing skill is 
included. Only the various testing related skill 
items are listed.
   Meanwhile, ETSS developed in 2005 lists “test 

engineer” as a job category, because test engineers 
are much more important for embedded software. 
ETSS specifies required skills for test engineers. 
   Japan Electronics College has established a new 
course called Software Test Design Course in April 
2008 to cope with the recently increased demand 
of software test specialists. This 2-year course 
provides curriculum for test engineering. According 
to its website, the course addresses: testing 
method, testing environment development skill, 
test management skill, performance evaluation 
skill, quality management, idea development skill, 
embedded system, and case studies. The pre-
requisit skills and knowledge are also handled 
including computer in general, programming, 
and networking skills. The college says that 
many companies are interested in employing the 
graduates so that the students need not worry about 
their employment. However, there is a concern 
if high school students could have a favorable 
impression on the word “test”. 
   Looking at the education overseas, for instance, 
IT companies in India are famous on their 
employee training.  In the human development 
program of IVC in Infosys, they aim at not only 
testing skills but also other skills in technology, 
quality, process, application and even behavioral 
abilities such as leadership and communication 
skills.  They also provide career opportunities for 
test engineers to become the board member in 
testing divisions.
   Product tests are not just a series of trial use. 
To conduct a test will require special knowledge 
about the product and the user. Test engineers 
must precisely understand the product perspective 
with its strategy and value proposition, which is 
equivalent to understanding of the status, strategy 
and value of the organization for the product. That 
is, test designers/engineers should share the sense 
of issues that the corporate management have. 
   In this sense, those who are capable of leading 
software testing are very valuable, so that there 
might be a discussion whether it is appropriate to 
have them just to handle testing. Human resources 
related to software testing should play a significant 
role to evaluate various risks related to quality 
of products as well as to ensure the “quality of 
organization”. Likewise, it will be necessary to 
foster software testing engineer/disigner/manager 



42

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

in the advanced education in universities and 
graduate schools. Enterprises are also required 
to promote the personnel who are specialized in 
software testing to higher states/positions.

Software risk management and 
its future

   Software test specialists are required to have 
communication skills to talk to development 
engineers to avoid any unwanted defects in 
quality of products, as well as specific test skills. 
Moreover, from the viewpoint of risk management, 
it is required to have management skills to consider 
the influence of inconvenience due to the society 
in large. Nonetheless, some companies are still 
putting beginners on the testing job considering 
that they can do the test without any special skills.  
Software are becoming further complicated and the 
whole world is relying more heavily on software. 
Therefore, even though software test technologies 
will advance, our concerns on serious software 
accidents will continue to exist and to grow. 
Considering the significance of risk management, 
it would be necessary to create a social framework 
to this issue. This is also related to the needs of 
compliance in recent years.[33-38]  Hence, here is a 
proposal for software risk management in a wider 
perspective.

8-1  K n o w l e d g e  s h a r i n g  t h r o u g h  t h e 
establishment of accident investigation 
committee

   In case when any failure of software system 
occurs that could affect the society, the accident 
investigation committee analyze the software 
system thoroughly to prevent similar accidents, 
and our society and engineering community 
can learn these lessons to advance the software 
systems. There would be several possibilities how 
to form such committees. One would be to consist 
of contractor and owner/orderer.  The other is to 
have outside organization where the concerned 
party would not participate in.  Their mission is 
not to determine who is responsible but only to 
analyze why the accidents have occurred. In the 
current government, local or central, procurement 
operation, most are divided up according to work 
phase, so that multiple contractors are participated 

to make a whole system. If any accident occurs, 
various parties would be involved, and this will 
add the complexity to handle the problems. 

8-2     Software test audit by the third party
   Software systems that may affect the society 
should require audit by the outside third parties 
other than the owner/orderer and contractor. 
This auditor will compile the results with the 
software test and put the documents in the third 
party archive. Once any inconvenience occurs to 
the system, any people to solve the problem will 
immediately access the archived record and act 
any adequate operations. Such organizations are 
required to have the capability of comprehensive 
quality evaluation and risk management including 
extensive software testing capabilities.

8-3    Legal systems to handle software failures
   The current product liability laws (PL Laws) 
would not apply to software. However, as there 
are requests to apply PL laws even for software 
because accidents could occur by the failure of 
software of the system, there is a possibility that 
the law will be enforced for product liability 
concerning software. In this case, it is desirable 
to have laws and regulations to minimize any 
damages of accidents. This may handle - the 
current software license agreement  (End User 
License Agreement, EULA) - which claims entire 
product liability to the producer. One issue would 
be how to control potential damages due to the 
modification by users or outside parties, while 
promoting the technical development. 

8-4  Study on terminology, description and 
representation, and basic knowledge of 
software

   Software related accidents and problems may 
only be attributed to software specialist, and the 
organization on the whole may not understand the 
issue. This may lead to a neglect of software quality 
because it is not perceived as the issue for whole 
the stakeholders. In order to avoid this situation 
and to share the successful results of e-Japan 
strategy by all citizens in Japan, it is necessary to 
make efforts to promote researches on software 
terminology, description and representation so that 
general people and managers of organization can 

8



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

43

9

easily understand software related accidents and 
issues. Activities for training and proliferation for 
software to general public would also be required. 
   These kinds of activities described from 8-1 
to 8-4 have potentials to bring an opportunity to 
review the quality of Japanese systems including 
products made in Japan, and to be an activity 
to widely provide quality related services not 
only to a company but also to the society, which 
is “industrialization of quality”, so to speak.
If software test is treated from such viewpoints, 
investment in software test personnel including 
researchers, designers, engineers and managers will 
not only enhance the industrial competitiveness of 
Japan but also to create a new knowledge industry 
to contribute to the safety and security of Japan and 
the rest of the world. 

Conclusion

   As software tests have been conducted as a final 
process in conventional software development, 
some are mixed up with debugging, which caused 
problems. Now, in recently years, software test as 
a quality assurance and risk management activity 
gains a lot more attention and appreciation. 
   This is because embedded software system 
has become widely use, though which has led 
unexpected troubles by unexpected use by users. 
Some troubles have had caused a significant 
influence on our daily lives. These problems cannot 
be solved only by debugging, but by conducting 
various software test both in and around the system 
where every possible cases are covered. Technical 
development and system and environmental 
maintenance should be conducted to create a 
quality and reliable software, along with the 
promotion of software test development, fostering 
its specialists. In fact, due to both the importance 
and difficulty of software test, new companies and 
organizations specialized in software test have 
emerged and their business is steadily growing. 
   These are “industrialization of quality” of 
software so that it should be emphasized that 
investment in software test researchers, designers, 
engineers and managers would not only enhance 
the industrial competitiveness of Japan but also 
to create a new knowledge industry contributing 
to the safety and security of the country and the 

world. 

Acknowledgment
   We would like to extend our gratitude for 
providing invaluable information in this project to 
the following people: Professor Zengo Furukawa, 
Reliability Information System Engineering 
Department, Faculty of Engineering, Kagawa 
University, Lecturer Yasuharu Nishi, Faculty of 
Electronics and Communication, The University 
of Electo-Communications, Takahiko Kosuge 
Principal Researcher, Open Source Education 
System, Japan Electronics College  Dr. Masashiro 
Tsuruho,  Director of Software Engineering 
Center (SEC), Information-Technology Promotion 
Agency, Japan (IPA), Hiroshi Monden, Project 
Leader of Embedded Software Project, SEC, IPA,  
Dr. Masayuki Hirayama, Researcher, Embedded 
Software Project, SEC, IPA, Yurie Ito, Director 
of Technical Operation, Office of Business 
Planning, Japan Computer Emergency Response 
Team Coordination Center (JPCERT), Takayoshi 
Shiigi, Senior Analyst, JPCERT, Kazuya Togashi 
Chief System Architect, Office of Business 
Planning, JPCERT, Hirohisa Furuta, Information 
Security Analyst, Group Manager, Information 
Coordination Group, JPCERT , Kenji Onishi, 
Senior Consultant, Enginnering Solution Division, 
Mamezo Corporation, Toru Matsuoya, President 
and CEO of Debug Engineering Research Institute, 
Dr. Juichi Takahashi, Distinguished Engineer, 
Software Assurance Dept. Platform Technology 
Division, TV Business Group, Sony Corporation, 
Kiyotaka Asai, President and CEO of Veriserve 
Corporation, Nobuhito Katsumata, Manager, and 
Katanori Sasaki, Manager, Veriserve Corporation. 

References
[1]   Nik kei  ITpro,  Tokyo Stock Exchange 

New Derivative Selling/Buying System 
Restored, due to initialization error of the 
memory : http://itpro.nikkeibp.co.jp/article/
NEWS/20080212/293526/ (Japanese)

[2]   Mainichi Newspaper, Train Station Ticket Gate 
Machine Trouble: confusion of commuters in 
metropolis, October 12, 2007No.42, Special 
Article 1, 2004 (Japanese)

[3]     Asahi Newspaper, A mistake of a text led a 
big trouble: Ticket Gate Machine Trouble in 



44

S C I E N C E  &  T E C H N O L O G Y  T R E N D S

Tokyo Area, October 28, 2007 (Japanese)
[4]    Teiichi Aruga, Another trouble of train 

station t icket gate machine, no lesson 
was learned from the past, Future of IT 
industry, NikkeiNet, October 16, 2007:  
http://it.nikkei.co.jp/business/column/aruga 
_gyokai. aspx?n=MMIT0z000016102007 
(Japanese)

[5]   Teiichi Aruga, “Suica” troubles at train 
station ticket gate, Accountability of JR, 
Future of IT industry : http://it.nikkei.co.jp/
business/ column/aruga _gyokai.aspx?n=M
MIT0z000004122006 (Japanese)

[6]   Naohiko FUKAYA, Zengo FURUKAWA, 
Yasuharu NISHI, special issue: New Trend of 
Software Test, Journal of IPSJ, Vol 49, No.2 
126-173 (Japanese)

[7]   Glenford Myers, The Art of Testing, First 
Issue in 1979, Second Edition in 2004.

[8]    SQuBOK Committee,  Software Test Quality 
Knowledge system Guide – SQuBOK Guide, 
Ohmusha, 2007 (Japanese)

[9]    JIS X 0160: 1996, Software Life Cycle 
Process, Japan Standards Association, 1996 
(Japanese)

[10]  J IS X0170 : 2004, System Life Cycle  
Process, Japan Standards Association, 2004 
(Japanese)

[11]  Tosh ia k i  KU ROK AWA ,  Towa rd  t he 
Improvement of Quality and Reliability 
in Information Systems Construction – A 
Study of “Business Rules” and Requirements 
Engineering in the Upstream Process –, 
Science & Technology Trends – Quarterly 
Review, No.11, April 2003, pp.19-29

[12]  Software Engineering Center, Information-
Technology Promotion Agency, Securing 
a required quality with involvement of 
corporate management – Key of IT business 
from the upstream process. SEC BOOKS, 
Ohmusha, 2005 (Japanese)

[13]  Susumu HAYASHI, Toshiaki KUROKAWA, The 
Two Rationalities and Japan’s Software 
Engineer ing, Science and Technology 
Trends - Quarterly Review, No. 14, January 
2005, pp.41-53

[14]  Kent Beck, Test Driven Development: By 
Example, Addison-Wesley Professional, 
2002 

[15]  Susumu Hayashi, Pan YiBing, Masami SATO, 
Kenji MORI, SUL Sejeon and Shusuke 
HARUNA. Test Driven Development of 
UML Models with SMART modeling system. 
<<UML>> 2004 – The Unified Modeling 
Language, Lecture Notes in Comp. Sci., No. 
3273, Springer-Verlag. pp.395-409, 2004

[16]  Katsuhiko KAJI, New phase of IT policy 
and expectation to SEC, SEC Forum 2006, 
2006 : ht tps://sec.jpa.go.jp/download /
dl.php?filename=event/2006/20060612/
secforum2006_0_kazi.pdf  (Japanese)

[17]  Industrial Structure Committee IT Economy 
Group, IT Service Software Subcommittee 
Interim Report, June 2006 :  http//www.meti.
go.jp/press/20060613010/torimatome-hontai-
set.pdf (Japanese)

[18]  Toru YAMASHITA, Proposals for Advanced 
IT Human Resources, NHK Shuppan, 2007 
(Japanese)

[19]  Ministry of Economy, Trade and Industry, 
Information Policy Agency, Information 
Policy Unit Information Processing Unit 
Information Process Promotion Section, 
2007 Embedded Software Industrial Activity 
Research Report, June 2007 (Japanese)

[20]  Kenji ONISHI et al., JSTQB textbook,  
JSTQB c e r t i f i c a t ion  t e s t  e ng i ne e r, 
Foundation Level Test, Shoeisha, 2007 
(Japanese)

[21]  Cem Kaner, Jack Falk, Hung Quoc Nguyen, 
Testing Computer Software, 2nd Edition, 
John Wiley & Sons, 1999 

[22]  Kaner, Cem, James Bach, Bret Pettichord 
(Eds.) Lessons Learned in Software Testing, 
John Wiley&Sons, 2002

[23]  Masataka Yoshizawa, Koichi Akiyama, 
Taro Sengoku, Sof tware Test HAYST 
Method Basics, How to Improve Quality and 
Productivity, Nikkagiren, 2007 (Japanese)

[24] Su s u mu  H ay a s h i ,  I n fo r m a t io n  a n d 
Communications Technology and Shiso 
– Shiso as a Capability for Science and 
Technology, Science and Technology Trend 
Quarterly Review, No. 23, April 2007, 
pp.11-22

[25]   Alain Abran and James W. Moore (Executive 
Editors), Pierre Bomrque and Robert Dupuis 
(Editors), Guide to the Engineering Body of 



Q U A R T E R L Y  R E V I E W  N o . 2 9  /  O c t o b e r  2 0 0 8

45

Toshiaki KUROKAWA
Affiliated Fellow, NISTEP
CSK Holdings Corporation, CSK Fellow
http://www.csk.com/index.html 

Worked for Toshiba and IBM before joining CSK.  Specialized in programming language, object-
oriented programming and meta data standardization. Interested in the upstream process of system 
development, services sciences, science and technology community, and cloud computing.

Masato SHINAGAWA
Affiliated Fellow, NISTEP
Academic Professor, Hosei University Information Technology Research Center

1967- 2000, MPT (Ministory of Post & Telecommunications)
2003-2006, SI business
Interested in correlation between natural science and social science.

(Original Japanese version: published in April 2008)

Knowledge, 2004 Version, SWEBOK, IEEE 
Computer Society and IEEE,2004 

[26]   National Institute of Advanced Industrial 
Science and Technology, Model Inspection 
to learn in 4 Days, NTS, 2006 (Japanese)

[27]  ON -THE -FLY, LTL MODEL CHECKING 
with SPI N: ht t p://spin root .com /spin /
whatispin.html 

[28]   Toshikazu TAKAHASHI, Chishiki Zero kara 
Manabu Software Test, Software Test to learn 
for Beginners, Shoeisha, 2005 (Japanese)

[29]	 IT Verification Industry Association(IVIA) 
website: http://www.ivia.gr.jp/index.html 
(Japanese)

[31]  I nte r nat ional  Test ing Qual i f icat ions 
Board(ISTQB) website: http://www.istqb.org/

[32]   Japan Testing Qualifications Board (JSTQB) 
website: http://jstqb.jp/index.html (Japanese)

[33]  Hisamichi OKAMURA, Kaisha no Naibu 
Tosei, Corporate Compliance, Nikkei 
Shinbun Shuppansha, 2007 (Japanese)

[34]   Financial Services Agency, SOX Laws and 
Financial Services Act and its Enforced 
Regulations, February 2007 (Japanese)

[35]  Financial Services Agency, Financial 
Statement Compliance Evaluation and 
Supervision Standard related to Financial 
Statement, February 2007 (Japanese)

[36]  Financial Services Agency, Financial 
Statement Compliance Evaluation and 
Implementation Standards concerning 
Supervision, February 2007 (Japanese)

[37]   Ministry of Economy, Industry and Trade, 
System Management Standard Supplemental 
Information (IT Governance Guidance 
concerning Financial Statement), February 
2006 (Japanese)

[38]   Ministry of Economy, Industry and Trade, 
System Management Standard Supplemental 
Information (IT Governance Guidance 
concerning Financial Statement) Annex, 
December 2006 (Japanese)


