
41

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

3

The Two Rationalities and
Japan’s Software Engineering

SUSUMU HAYASHI (Affiliated Fellow)*

TOSHIAKI KUROKAWA (Affiliated Fellow)**

1 Introduction

Japanese people are often said to lack logicality

and rationality. Until recently, this well -known

characteristic of the Japanese has been linked

to the weakness of the Japanese sof tware

industry and software engineering. For example,

researchers have considered this trait to be

related to the structural weakness of the Japanese

software industry. They have also attributed the

failure of the Japanese software industry and

software engineering to gain a strong position in

the global market, even though it has received

priority funding by the government, to Japanese

society’s weakness in rat ional and logical

thinking.

The Japanese industry cannot compete with its U.S.

and European counterparts in the software sector

unless rational thinking takes root in Japanese

society as it has in Western societies. The

Japanese software sector cannot thrive unless

rational and logical thinking is disseminated in

Japanese society, but it may be impossible for

the Japanese to become rational and logical.

Therefore, it is hardly likely that the Japanese

software industry can thrive. The only way to

overcome this problem is to teach rational and

logical thinking in schools, which means the

further Westernization and Americanization of

Japan.

Until recently, many experts have made all of

the above assumptions. However, the U.S., the

leader in the software sector, has seen a change

that defies them. During Japan’s “lost decade,” the

world’s - leading American software consultants

began introducing Japanese methodologies

such as the Toyota Production System into their

software engineering schemes.

“Rationality” is not exclusive to Western,

especially American, society, and there is no

single legitimate form of rationality, or absolute

rationality. Rationalities vary as much as cultures

do, and United States has found one kind of

“Japanese -style” rationality. This rationality is

becoming an essential software engineering

technique that allows engineers to cope with a

rapidly changing business environment.

A deep understanding and the ef fective

application of this technique could dramatically

strengthen the Japanese software engineering

community and industry. This is an unparalleled

oppor tun it y to enhance Japan’s sof tware

engineering capabilities to world-class level, and

Japan must not miss it.

2 Japan’s software
 technological capabilities
The term “software” has a number of meanings

ranging from pop culture items, such as manga

(comics) and anime (animation), to computer

software. Japan’s competitiveness in the manga

and anime fields is unsurpassed. However, as

far as business software and its development

and production technology are concerned,

excluding pop cultural products such as game

software, Japan has very weak capability in

 * Susumu Hayashi Professor at the Department of Computer and Systems Engineering, Faculty of Engineering, Kobe University,
 http://www.kobe-u.ac.jp/
 ** Toshiaki Kurokawa CSK Fellow, e-Solution Technology Division, CSK Corporation • http:www.csk.co.jp/index.html

42

S C I E N C E & T E C H N O L O G Y T R E N D S

43

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

software technology. In this article, “software”

and “software technological capability” refer only

to business software, a sector in which Japan

is weak. When considering software from the

viewpoint of Japan’s industrial and technological

policy, this sector draws major attention because

of its scale and the seriousness of the problems it

faces.

T h e s o f t w a r e i n d u s t r y a n d s o f t w a r e

engineering in this sense are divided into two

types. This division is important when applying

our analysis to pol icy - making because the

two types call for different kinds of human

resource. These two types are explained from the

viewpoint of industrial structure.

2-1 The two types of software technological
 capability

Michael Cusumano of the Massachusetts

Institute of Technology splits software companies

into two models: products companies such

as Microsoft and Adobe Systems and service

compan ies such as IBM and NTT Data [4].

Generally speaking, the former business model

involves developing software intended for a mass

market and selling copies in high volume. On

the other hand, the latter engages in designing

and constructing custom software and computer

systems to satisfy specif ic customer needs.

These are simplified models, and in reality, many

software companies either fall between the two

types or as a combination of both. However,

these intermediate cases are disregarded in our

discussion because our focus is on the software

development business.

We refer to Cusumano’s scheme, which is a

classification by business model, in an article

that explores technological capabilities because

his two business models depend on dissimilar

software development technologies by which

we can categor ize sof tware technologies.

Engineers work ing for sof tware products

companies are expected to develop software

as marketable “products,” including operating

systems and business appl ications such as

Excel, Java, Windows, Linux, Oracle, and GNU,

and sometimes even game software. In this

regard, the Ministry of Economy, Trade and

Industry’s “Exploratory Software Project” looks

for individuals with this software development

capabi l ity. Software engineers in products

companies develop software in the same way that

cars and home appliances are developed.

On the other hand, there a re d i f ferent

expectations of engineers in software service

companies. They need to be fami l iar with

software development methodologies, including

the waterfall and spiral models, agile methods,

and requirement-specification engineering, and

they must use such methodologies to define

customer requirements, design quality custom

software at low cost in a short time, and manage

and operate them. Software engineers in service

companies create software in the same way that

civil engineers design and construct buildings.

In terms of industry size, this second type of

software business far exceeds the first type,

which consists of software products companies.

We should consider th i red aspect when

discussing the technology of software service

companies. In the U.S. sof tware industr y,

software engineers have been devising original

software development methodologies that are

so innovative that they have become a source of

corporate competitiveness, and they are selling

these techniques as knowledge. Many of the

leading software enginners are not university

researchers but software consultants. They

are directly connected to industry, and can be

compared to industrial engineering consultants

who “sell” production techniques, or former

Toyota engineers who now advocate the Toyota

Production System, for example. Although it

seems that these technologies have only little

impact on industry because they contribute to

production technology rather than directly to

products, they do influence the competitiveness

of software technology.

This article groups these three aspects of

software technology into the following two

types:

• P type: This refers to technological capability

that sof tware products companies are

required to have and is the first aspect among

the three.

• S type: This refers to the technological

capability that software service companies

42

S C I E N C E & T E C H N O L O G Y T R E N D S

43

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

are required to have and is a combination of

the second and third aspects.

When discussing Japan’s software technological

capability, it is important to be explicit on which

type is considered, especially for policy-makers

for the software industry.

Sof tware compan ies do not need la rge

capital investment because only computers and

communications infrastructure are required.

In other words, the software industry is highly

labor - intensive and the software industry’s

largest, most important production resource

is people, or engineers. The most effective

promotional measure, then, is human resource

development. However, P - type and S - type

technological capabilities demand different kinds

of engineer, and can be mutually contradictory.

Therefore, there should be two different

methods of human resource development. In his

talk[4], Cusumano suggests that the best strategy

for software companies to ensure steady growth

even in bad economic times is to combine the

two capabilities. Although this is possible for an

enterprise, or a group of individuals, it is very

difficult for a single person to excel in both P- and

S -type capabilities. Developing human resources

with hybrid capabi l ities is a chal lenge. An

important consideration in developing national

strategies for nurturing human resources is to

decide which approach to take, either focusing

on the P type, as in the case of the Exploratory

Sof t ware Projec t or prov id i ng f u nds for

educational programs intended to foster human

resources who can combine the two capabilities.

2-2 An analysis of Japan’s technological
 capabilities

Both types of Japan’s software technological

capabil ity in our classi f ication measure up

very poorly. In the P- type field, except for a

few remarkable developments such as Ruby,

the Japanese software market is dominated

by foreign products, as demonstrated by the

Japan Electronics and Information Technology

Industries Association’s statistics on software

imports and exports[10], which shows a great

excess of imports over exports at a ratio of 100

to 1 (Figure 1). Note that the data exclude game

software.

Since S -type development capability involves

methodology, it cannot be easily statistically

analyzed. Like Cusumano, who onece praised

the Japanese software industry cal l ing it a

Figure 1 : Japan’s Software Imports and Exports

* Year 2000 results
Source: http://it.jeita.or.jp/statistics/software/2000/4.html

44

S C I E N C E & T E C H N O L O G Y T R E N D S

45

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

software factory, some experts say that Japan

has moderate competitiveness in this f ield.

However, the industry is still immature, especially

in one of the two sub-categories of the S type.

These are technological capability provided by

consultants. First of all, software consultancy is

not yet an established profession in Japan, and

both academic and corporate researchers have a

long way to develop technologies that are directly

applicable to industry.

The U.S. dominates the software sector, and

the rest of the world, including Japan, is in a

weak position. However, Japan’s capability in

software technology is inferior even to Europe’s.

Europe has invented many notions in software

engineering, especially those belong to the

S -type category, ranging from basic theories like

formal methods*1 to practical techniques such

as the use case model*2, while Japan has no such

achievements. However, Japan is ranked after the

U.S. in the hardware sector despite its presumable

weakness in information technology. This is

a remarkable achievement for Japan in the IT

industry, where both the hardware and software

markets are highly oligopolistic. In the console

gaming business, Japan leads in both hardware

and software. These strengths of Japan highly

contrast the country’s weakness in the overall

software industry except the gaming sector.

This situation has occurred for some specific

fundamental reasons.

3 Exploring the causes
 of weakness
W h at h a s we a ke ne d J ap a n’s s o f t wa r e

technological capability? There are a number

of different views, but our analysis shows that

the primary cause is Japanese society’s “lack of

rational thinking.”

3-1 Software and rationality/logicality
Japanese society is said to be poor at rational

and logical thinking. We partly agree with this

and attribute the weakness of the Japanese

software industry to this weakness in Japanese

society.

Some oppose this perception and instead

cite the poor language skills of the Japanese,

especially in English, as the primary cause.

Language is the best instrument to describe,

r e co r d , m a n i pu l a t e , a n d co m mu n i c a t e

knowledge. Even graph ica l tools such as

the Unified Modeling Language (UML)*3 are

referred to as graphical language. “Language”

is a collective term and describes, records,

manipulates, and communicates knowledge.

Therefore, poor language skills seem to show a

lack of rationality and logicality and, if our theory

is correct, may eventually weaken the software

industry. There is no contradiction between this

theory and our own.

Japan’s weakness in the software industry and

software engineering is attributable to a lack of

rationality and logicality among the Japanese.

Because software is by nature rational and logical,

a lack of rationality and logicality leads to a weak

software industry.

How is software rational and logical? This

question requires analysis of the nature of

software. Software’s nature can be described as

follows:

• Software is ar ti f icial rules that control

cyberspace.

• Software is built for specific purposes.

3-2 Software and logicality: Verification
In short, software is “artificial rules that control

cyberspace.” Alistair Cockburn, a renowned

software consultant, explains software using

the philosopher Wittgenstein’s concept of a

“language game”[3]. On a computer, one can

create anything, even a virtual universe that

defies physical laws, through game software and

simulation systems, for example. In computer

cyberspace, a programmer can be like God and

create physical laws. Everything is artificial and

is free from real-world rules and laws. Although

hardware capacity is a major constraint in reality,

the software world is a theoretically “unrestricted

space” governed only by logic (This article uses

the term “logic” in a broad sense, including, for

example, algorithm efficiency).

Like abstract mathematics, software exists in a

conceptual world and is hardly governed by rules

in this world such as physical laws. Software only

follows the few laws that abstract concepts must

44

S C I E N C E & T E C H N O L O G Y T R E N D S

45

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

follow, such as logical rules. This creates a major

difference between software and other artificial

objects such as physical machines. Developing

software is like drawing a picture with a pencil

on white paper, where the pencil represents logic

and the paper, the conceptual world.

Truth def ined by ar t i f icia l ru les (formal

rationality, instrumental rationality) is governed

by logic in a broad sense. Technically, it is

embodied by mechanical reasoning methods

such as formal and term- rewriting systems*4

in mathematical logic. This is why formal

ver i f ica t ion i s f u nda ment a l to sof t wa re

engineering and computer science[6].

3-3 Software and rationality:
 Requirements engineering

“Validation” is a term often used in contrast

to “verification.” Although they have similar

meanings, there is a major difference between

the two terms. Verification refers to checking

whether software conforms to its predefined

specifications. This process does not involve

cha ng i ng the spec i f icat ions , wh ich i s a

description of the software requirements and an

absolute axiom. Verification can be compared

to prov i ng a theorem f rom a n a x iom i n

demonstrative geometry and can be performed

within cyberspace (Table 1).

By contrast, val idation requires actual ly

running the finished software to check whether

it meets the requirements set before specification,

that is, the initial purpose of the software

development. This also includes checking whether

the specification conforms to the purpose (Table

1). Unlike verification, specifications are no longer

axioms but are instead treated like differential

equations expressing physical phenomena. When

a differential equation expressing a phenomenon is

solved, and the solution is discovered to contradict

reality, it must be incorrect if there is nothing

wrong with the numerical analysis. Consequently,

the differential equation must be changed. In

other words, when specifications are defined

as formalizing the purposes and programs are

written as “solutions” to these purposes, validation

checks and reviews programs against their initial

purpose. Verification and validation are two major

interrelated elements of software development.

In cases of actual validation, specifications

as formal ized purposes and programs are

checked in para l lel , a lthough th is i s not

possible until the programs are completed. In a

software development project, the last-minute

discovery of bugs in the specifications is the

worst situation. Most of these bugs are not a

result of contradictions in the program, which

may be solved within cyberspace, but the

disparity between the expected functions of the

finished software and the original purpose or

requirements. This is why software developers

are placing increasing importance on ensuring

a close agreement between specifications and

purposes as well as clarifying the purposes and

translating them into specifications as accurately

as possible. Software engineering researchers

have responded to this problem by launching

a discipline called requirements engineering

(Table 1). Requirements engineering contributes

to identify the one of the nature of the software,

that is, “Software is built for specific purposes”.

4 Is the Japanese software
 industry really hopeless?
We have already explained that one aspect of

software, or software as artificial rules, depends

on logicality. Another aspect, however, is not

about logicality. Requirement definition as the

formalization of the purpose and requirement

analysis necessary for that are areas that modern

logic has abandoned. This can be explained

Table 1 : Verification, validation, requirement engineering

Verification
Checking a system against its specifications, where specifications are defined as preexisting explicit
descriptions of the requirements of a system.

Validation
Checking how well a system conforms to the requirements set before the specifications, or checking
how well it conforms to the original requirements. Interpretations of this term are more varied than those
of verification, and this article uses the term in a broad sense.

Requirements engineering
A technology to identify the requirements of the software to be developed. This is essential, especially
for custom software development.

46

S C I E N C E & T E C H N O L O G Y T R E N D S

47

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

using terms that Max Weber, one of the fathers

of sociology, defined in his (unfinished) theory

on rationality. The first aspect of software,

arti f icial rules, represents the concept that

Weber calls formal and instrumental rationalities.

He says that solving the second aspect using

requirements engineering means building and

analyzing the starting point of formal rationality

and instrumental rationality, based on value

rationality and substantial rationality. In other

words, software consists of “rationality and

logicality,” and construction naturally requires

rational and logical thinking.

In his analysis of the strength of Japan’s

automotive industry[5], Takahiro Fujimoto defines

the architecture of industr ia l products in

two dimensions using four types: “modular

versus integral types” and “open versus closed

types.” He argues that Japan shows strength

in products with closed - integral architecture

such as automobiles and game software, which

require the integration of elements in a closed

environment. However, Japan suffers weakness in

products with open-modular architecture such as

personal computers and packaged software.

Fujimoto’s theory is based on the “design

information transfer theory,” which regards

design and manufactur ing as processes of

“in format ion t r ansfer.” For example, the

stamping press of car body panels is considered

as a transfer of shape information to sheet steel.

Fujimoto says that Japan excels in handling

“media with poor writability” such as sheet steel.

Although his argument on this point is weak,

he demonstrates that making good transfers to

media with poor writability requires “building-in

quality,” and the final product quality depends on

the manufacturer’s capability in closed-integral

ac t iv it y, i nclud ing care about deta i l and

craftsmanship.

In Fujimoto’s concept of information transfer,

requ i rements eng ineer ing i s t ransfer r ing

implicit information to formal information, and

specification-based programming is transferring

requi rements, or formal ized purposes, to

executable programs. In this regard, cyberspace

is a medium with ultimate writability because it

is governed solely by logic. Therefore, a product

can be made simply by writing software design

information rationally and logically in a formal

language such as a programming language. Unlike

car production, no further transfer is required.

In the software development, designing can be

considered almost synonymous with producing

(although software designing is actually divided

into multiple stages).

Fuj imoto expla ins that because Japan’s

technology is less competitive in areas where

in formation transfer is easy, the Japanese

s o f t w a r e i n d u s t r y l a c k s i n t e r n a t i o n a l

competitiveness. Software is a product that can

be transferred simply by writing on a storage

medium. In this sense, there is a similarity

between our argument that software solely

depends on rat ional it y and logica l it y and

Fujimoto’s explanation that the software sector is

driven by media with greater writability. We focus

on structure while Fujimoto centers on how

structure is written.

I f our assumptions that the Japanese are

cultural ly i r rational and i l logical and that

software is a combination of rationality and

logicality were both correct, the weakness of the

Japanese software industry could be attributed

to cultural characteristics. This leads to the

conclusion that the Japanese software industry

will not thrive unless Japan changes its culture.

This is supported by the similarity between

our theory and Fujimoto’s, which explains the

weakness of the Japanese software industry from

a different perspective, adopting the industrial

engineering (production engineering) concept of

transfer to media. This could also account for “the

lost decade of Japan”.

5 The paradox of agile methods
Reality is not so simple, however. Fujimoto

points out that it was during this lost decade

that the U.S. d iscovered the va lue of the

Toyota Production System, a lean production

in worldwide use as an ef fective Japanese

production technique[5]. However, it was not only

industrial engineering technology that the U.S.

learned from Japan during this period.

Shortly after realizing the strength of the

Japanese production technique, the U.S., the

leading countr y in sof tware engineer ing,

46

S C I E N C E & T E C H N O L O G Y T R E N D S

47

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

started to pay attention to a set of new software

development techniques called agile methods.

With no connection with earl ier Japanese

techniques by industrial engineers, agile methods

have been created to help custom software

developers.

In traditional sof tware engineering, it is

usual among software developers that, once a

development plan has been made, it should not

be changed. It is assumed that a project should

be split into modules and distributed, and the

interface between each module should be defined

by a detailed “contract.” In any field of software

engineering, this has been so fundamental

a principle that deviating from it has been

impermissible. Software engineering has been

how to correct development processes that easily

deviate from this principle.

Ag i l e s o f t wa r e deve lopment met ho d s

have successfu l ly def ied th is pr inciple by

demonstrating higher productivity and improved

quality. Their impact is as strong as the influence

of the Toyota Production System on Detroit,

which had long stuck to scale- and plan-oriented

production systems. In software engineering,

however, revolutionary change came from inside,

rather from outside.

How comple te l y t he s e a g i l e me t ho d s

defy traditional common sense in software

engineering is shown by the bold name given

to one of them: Extreme Programming. Known

as XP, this programming technique has become

increasingly popular in the U.S. and even in Japan

over the past few years. Other well-known agile

methods are Scrum, Crystal, Adaptive Software

Development, and recently, Lean Sof tware

Development. Software industries worldwide

are struggling to find the right ways of handling

these new technological methodologies that have

emerged against traditional approaches.

These new software development methods

allow a project involving up to about 10 people

to be carried out with great efficiency. These

approaches have been dubbed col lectively

by their inventors “agile methods” after the

industrial engineering method introduced by the

Iacocca Institute. Thus, the name “agile” derives

from a methodology intended to f lexibly and

speedily meet the demands of end users and cope

with change in these demands.

Over the past few years, some American

researchers have argued that agile software

development is closely related to Japanese

p r o d u c t i o n t e c h n i q u e s a n d b u s i n e s s

administration. A typical example is Mary

Poppendieck, who advocates Lean Software

D e v e l o p m e n t . H e r m o n o g r a p h o n t h i s

methodology[8], which begins by referring to

Toyota, mentions people and terms associated

with the Toyota Production System such as

Ohno (Taiichi Ohno) and software kanban.

Scrum, another methodology, is a term first

used by Ikujiro Nonaka, a well-known Japanese

business management professor. Moreover, in

a panel discussion at XP 2003, an international

conference on Extreme Programming, Kent

Beck, the father of XP, used a concept known

in lean production as “muda” (waste) to explain

test cases in test- driven development, which

constitutes XP’s core technology[1].

The media used to use expressions like “the

information technology industry = an emerging

next-generation industry,” “the machine industry

= a declining old industry,” “a country at the

forefront in new industries = the United States,”

and “a country with old industries and falling

behind the times = Japan,” showing a simplified

picture. Paradoxically, however, knowledge

originating from Japan’s “traditional industries”

such as the automotive industry is highly valued

as cutting-edge concepts in the core sector of the

IT industry, which symbolizes the victory of the

U.S.

Let us provide a brief description of agile

development methods to show how they are

“Japanese”. XP rejects completed specifications

because having specifications and implementing

them is a two - fold process, and managing it

interferes with efficiency. A development scheme

that defines detailed requirements and formulates

a meticulous plan before star ting is cal led

up - front development. In this approach, the

majority of the cost is spent at the initial stage of

development, or up front. In a coordinate system

whose horizontal axis represents time elapsed,

the cost of an up - front development project

draws a curve that sticks up like the prow of a

boat during the early period.

48

S C I E N C E & T E C H N O L O G Y T R E N D S

49

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

If we assume that systems are nonl inear

and emergent and that customers’ minds and

environments change, agile methods are more

suitable. This concept is exactly same as “ex-post

rationality,” a rationality Fujimoto argues to be

inherent in Toyota- style thinking (as opposed

to up-front development, which corresponds to

Fujimoto’s “ex-ante rationality”).

XP does not emphasize tools. In fact, XP

ingeniously incorporates the speci f ication

process in a manner that places a minimal load

on total development. Because of this design, it

is suggested that XP users avoid specific tools

except the compiler. For speci f ication, XP

employs CRC, a technique that uses paper cards

with simple formats printed on them. It resembles

the kanban scheme, which also uses paper cards,

in the Toyota Production System, as opposed

to Detroit’s heavy computer-aided systems for

production and inventory management.

In agi le development, teamwork is more

important than individual activity. XP requires

programming to be conducted in pairs. As a

result, team members work in an open room

rather than in private rooms. This environment

allows them to hear what others are discussing,

promoting a common understanding of the entire

project.

Ag i le development encourages delaying

decision -making, avoiding forced premature

decisions.

Agile development also emphasizes interaction

with customers. “The customer is God” is a

familiar phrase among agile developers. Some

teams even practice Onsite Customer, a technique

that involves customer representatives as on-site

team members so that the team can consult them

for decisions or instructions when a change or a

postponed decision must be made.

T hese a re on ly a few examples of the

similarities between agile methods and Japanese

thinking. This is not a result of Japanophile

because it was not unti l the value of agi le

methods was recognized that their inventors

not iced the re sembla nce bet ween the i r

approaches and Japanese approaches.

6 Elephant-type and
 monkey-type approaches
 and a fusion between them
Because of their practical benefits, skilled

programmers, especially those familiar with the

specific style of thinking known as the UNIX

culture, can easily appreciate and accept agile

methods, but software engineers who rely on

traditional up -front development are confused

by them. Barry Boehm, the well-known inventor

of the spiral model, published in early 2004

“Balancing Agility and Discipline”[2] to clarify

how discipline in up-front development relates to

agility. The book starts with an allegory about an

Figure 2 : The Agile Manifesto

Source: http://agilemanifesto.org/

48

S C I E N C E & T E C H N O L O G Y T R E N D S

49

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

elephant and a monkey, which perfectly explains

the relationship between agility and rationality.

Here is a summary of the story.

Once upon a time, an elephant lived in a village

near a jungle. For many years, the elephant served

the village by bringing back bananas from the

jungle and was appreciated by the villagers. One

day, a monkey appeared and began bringing

exotic fruits that no one had ever seen to the

village. Tired of bananas, the villagers were very

pleased with the monkey’s services and grew

indifferent to the elephant. However, as the

population of the village increased, the demand

for food grew so large that the monkey could

no longer support it alone. Criticized by the

villagers, the monkey visited the discouraged

lonely elephant and suggested a plan; the monkey

would find exotic fruits quickly with its agility

and the elephant, with its strength, would carry

them in bulk. This way, they could together bring

sufficient quantities of various fruits back to the

village. They lived together happily ever after.

The elephant represents methods such as

Fordism*5, Taylorism*6, and up-front development

that intend to achieve system rationality by

careful planning. The monkey corresponds to

methods such as agile development, and the

Toyota Production System. Boehm’s conclusion

is that, like the elephant and the monkey in the

allegory, both agility and up - front discipline

are equally important. However, this does not

mean that up-front methods surrendered to agile

methods upon their practical success or that

irrationality surrendered to rationality.

There are many different types of rationality.

Sociologist Yoshiro Yano[11] points out that

Weber contrasts the up - front rationality of

the “systematiker” (system builder) and the

rationality that seeks to gradually adapt to reality

through ceaseless improvement. The former is

the rationality of Fordism and Taylorism, which

Fujimoto calls ex-ante rationality, and the latter

is the rationality of agile methods and the Toyota

Production System, which Fujimoto calls ex-post

rationality. The story of the elephant and the

monkey implies not a compromise between

rationality and irrationality but a fusion between

elephant - type rational ity and monkey - type

rationality.

An industrial engineering expert says that the

concepts underlying new production methods

such as lean production*7, agile production*8,

and TOC*9 are actually Fordism and Taylorism,

and they are blended in various ways to serve

different purposes. This also applies to software

engineer ing. An in - depth analysis of agi le

methodology shows that it includes the same

mechanism as the basic theory of up - front

development. For example, some sof tware

engineers, including the first author, have noted

that test - driven development (TDD), a core

concept of XP, cleverly exploits a programming

technique based on Hoare logic, which is

fundamental to up-front development[7].

Today’s soc iet y i s h igh ly complex and

changing rapidly. To rationally meet its demands,

software developers should not depend only

on up - f ront development but should a lso

exploit what sociologists and philosophers call

“reflection”, or “ex-post rationality” in Fujimoto’s

terminology. Problems are often so complicated

that developers cannot find a promising solution.

They are also frustrated over “cl ients who

do not understand the difficulty of software

development,” because the moment a solution is

given, the clients change the initial requirements

because of the solution itself. However, the clients

are not to be blamed. Software developers should

meet these demands. Failing to do so means lack

of competitiveness.

An investigation of UML modeling methodology

shows that one of the most efficient approaches

to collecting requirements in the modeling

process of specification acquisition is to use

agile methods[7]. This exactly represents a fusion

between the elephant- type and monkey- type

approaches.

These discussions lead to an unmistakable

conclusion about the Japanese software industry.

The monkey - type approach that Japanese

companies have been taking is rational ity,

although a rationality dissimilar to elephant-type

rationalities such as Taylorism. Unlike when

Taylorism and Fordism dominated the world,

today’s companies must combine elephant-type

and monkey- type rationalities. Therefore, the

U.S., an elephant-type country, has learned from

the monkey-type approach of Japan. Although

50

S C I E N C E & T E C H N O L O G Y T R E N D S

51

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

Japan lacks elephant-type rationality represented

by ex-ante rationality or the rationality of the

Systematiker, if modern society requires two

rationalities and one is a universal rationality

originating in Japan, Japan has already reached

half of its goal. All Japan has to do is learn the

remaining elephant side of rationality just as the

U.S. has learned the monkey side.

7 Conclusion
The Japanese software industry is enormous. Its

sales of custom software such as online banking

systems are huge. This market has remained

highly domestic because of language and cultural

barriers. However, as the much- talked -about

recent project on the Shinsei Bank system

shows, the presence foreign systems engineers,

especially Indian engineers, is rapidly increasing

in Japan. If Chinese engineers join them, this

highly domestic industry may be conquered by

foreign companies.

Even if this does not become a reality, Japan

may st i l l be lef t behind the U.S., Europe,

and Asian countries in the performance of

information systems, particularly those that play a

key role in defining future social competitiveness.

This could result in a major decline in the

competitiveness of Japanese society. Signs of this

are already everywhere.

The cause of this situation is not simple.

It i s most l i kely der ived f rom the way of

thinking inherent in modern Japanese society,

predominantly ignorance and misunderstanding

of rationality and logicality. This can be traced

back to the Japanese social system, especially the

educational system, since the Meiji Era. We have

been conducting research from this perspective.

This article adopts the same perspective for

analyzing software engineering as a technological

aspect of the software industry.

7-1 Acquiring elephant-type rationality and
 strengthening monkey-type rationality

Of the two rationalities required for software

development, Japan needs to be complemented

by elephant-type rationality. In doing so, Japan

should recognize, reta in, and improve its

monkey- type rationality and integrate it with

elephant-type rationality.

Tradit iona l ly, sof tware engineer ing has

emphasized only the elephant- type approach.

However, researchers of software engineering are

revealing that the right solution is a combination

of both. This principle has proven effective in

not only software engineering but also many

other fields related to production and design.

This is confirmed by the fact that agile methods

in software engineering have been inspired by

ideas in industrial engineering and business

administration, two fields whose design and

production processes are completely different

from those in software engineering.

When faced with foreign methods, many

Japanese of ten show one of two extreme

responses: accepting them as if they were axioms

or neglecting them as unrealistic. This attitude,

however, is a fundamental weakness in Japan’s

competitiveness when the answer is somewhere

between the two extremes. For example,

Japanese software engineers tend to criticize

the monkey-type approach as irrational, thereby

denying the advantages of their own society.

Software engineers are beginning to accept

the idea that the monkey-type approach and a

fusion between the monkey- and elephant-type

approaches are the key to software engineering.

Japan should take this opportunity to catch up in

the area of . The secret of the Toyota Production

System has yet to be fully elucidated even after

the formulation of the lean production theory.

No other automotive manufacturer in the world,

after adopting lean production, has achieved

productivity as high as Toyota’s. Even Toyota

itself cannot entirely understand and explain its

system[5]. The Japanese software industry exists

in the same culture as Toyota, and the solution is

within its reach. Not using it would be irrational;

it may enable the industry to catch up with the

world leaders and perhaps even overtake them.

7-2 Policy-oriented research activities
Today’s move toward a fusion between the

elephant- and monkey-type approaches presents

the Japanese software industry with an ideal

opportunity to seize the top position in the

world. To take advantage of this opportunity,

Japan should identify and implement the policies

50

S C I E N C E & T E C H N O L O G Y T R E N D S

51

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

necessary for performing the three following

tasks:

(i) Perform complete research in techniques

in software engineering and industr ial

engineering including the Toyota Production

System from the viewpoint of Boehm’s

elephant- and monkey-type approaches, and

use the results to compare Japan’s software

industry and other industries such as the

automotive industry to identify the structural

problems of the Japanese software industry.

(ii) Examine whether Japan’s technological

capabi l i t ies i n a reas where Japan i s

competitive, such as gaming and mobile

technologies, can be evidence against our

theory or not.

(i i i) E lucidate the potent ia l s im i la r it ies

between automobi le product ion and

software production, which have both

been considered completely different in

production system, and extend the results

to other engineering fields and business

administration. In other words, identify the

infrastructure of production and design

issues in these engineering f ields and

formulate a theory.

Let us elaborate on the above three items.

In terms of immediate benefit to the software

industry, the f irst two are more important.

Both refer to research in areas where Japan

is competit ive, namely, the f i rst task is in

automobiles and the second is in gaming and

mobile technologies. In particular, the first

research task once started is likely to make rapid

progress since there are numerous research

resources available. There are other encouraging

factors that imply the potential benefits of this

attempt. Neither Cusumano nor Fujimoto have

addressed on these fields. Comparing software

engineering with industr ial engineering is

an unconvent iona l approach, and custom

software production, the main field in software

engineering, has not received much attention in

government programs. Research on Fujimoto’s

theory on information transfer will play a guiding

role in the first research task.

Japan’s strong competitiveness in the gaming

and mobile industries can be powerful evidence

against our theory. Unless we can produce

a proper explanation of this, our theory is

unrealistic. However, we can infer that these

two IT industries are very different from the

custom software industry, the primary target of

our theory; the volume of logical information

to be exchanged between users and computer

systems is much smaller in gaming and mobile

communications devices than in ordinary office

computers, for example. When we can explain

Japan’s competitiveness in these two industries,

our conclusion will gain a much more solid

foundation and our theory will be advanced into a

new stage.

In the mobile phone industry, the interfaces

of Japanese products in the early days were

obviously ad hoc and therefore inferior to the

products of Nokia and other overseas competitors

who employed software design principles.

Japanese manufacturers are, however, rapidly

overcoming this weakness. On the other hand,

game software production is reportedly moving

to the U.S. from Japan. Finding reasons behind

these changes will be a start in the second

research task.

The third and last research task is to elucidate

the infrastructure. Its potential impact on future

research makes it the most important among

the three. Telelogic, a Swedish firm, addresses

the requirement development process using a

multi-layer structure consisting of customers and

suppliers, which resembles a concept in supply

chain management[12]. This is in contrast to

Fujimoto’s approach[5] that assumes production as

the transfer of design information. These different

approaches suggest that areas that do not seem to

be related are in fact closely related and that their

relationships may be theoretically explainable.

It is still possible that the traditional two-fold

definition of software development, design and

production, must be abolished.

7-3 Possible policy directions
The last phase of the project on a fusion

between monkey- and elephant-type approaches

may lead to a fundamental reform of the entire

Japanese educational system, instead of merely a

change in software and information education.

52

S C I E N C E & T E C H N O L O G Y T R E N D S

53

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

This reform should start not at school but at a

social level and extend to school.

We suspect that Japan’s fundamental weakness

in software capabil ity stems from Japanese

society’s poor th inking power that forces

people to choose between one of two extremes.

In addit ion, there is a lack of conceptual

understanding of “information,” as demonstrated

by how easily Japanese people assume building

an information system is simply ordering and

buying computers and software.

It is very difficult for Japanese society to break

away from these traditional thinking patterns

only through government- led school reforms.

Unless triggered by society itself, efforts to reform

the school and educational systems will fail. In

this regard, Japan should not take an up -front

approach where policy-oriented research must

be completed before society can start developing

elephant-type capability. A preferable approach

is applying findings to actual production and

education and checking the results for problems

while research is ongoing. In other words,

by assuming that information engineers are

customers and the educational institutions that

produce them are suppliers, Japan should address

both in a industrial engineering framework

similar to the Toyota Production System. This

allows the nation to review, from the viewpoint

of supply chain management, its educational

institutions as well as its companies and society

that receive the “produced” human resources.

While society should continuously inform

universities of the types of human resource

needed, universities should develop such human

resources and supply them to society. These two

processes should be improved concurrently.

In this effort, research tasks (i) to (iii) should

progress in parallel. Radical educational reforms

could occur unintentional ly through these

research activities.

These reforms should be led by the public, not

by the government. However, the government

can support them and plant the seeds of such a

movement. Education to foster “good customers,”

who are scarce in current society, is one of these

reforms. This means fostering chief information

officers (CIOs). However, perhaps even industry

does not yet have a clear vision of what a good

customer or a CIO should be like, and Japanese

universit ies are far from ready to provide

education for these purposes. Guiding both

industry and academia to their goals is a role that

the Japanese government should play through its

policies.

Glossary

*1 Formal methods
 These refer col lec t ively to sof t ware

engineer ing methods that use formal

l anguage, forma l log ic and so for th.

Program ver i f icat ion theor y, a notion

that assures a program’s compliance with

the speci f ications through logical and

mathematical verification, is a major field of

formal methods.

*2 Use case
 Invented by Ivar Jacobson of Sweden,

use cases are a technique for describing

the requirements of a system (or sets of

described system requirements).

*3 UML
 A semi-formal language that may become

the de facto standard in modeling languages,

which make a “blueprint” of software. It was

invented by “Three Amigos”, including Ivar

Jacobson.

*4 Formal systems and term-rewriting systems
 A formal system is a set of mechanical

rules defined by syllogism and other logical

systems. A term-rewriting system, a formal

system, expresses mathematical rules such

as equation transformations and calculations

rather than logic.

*5 Fordism
 A mass production system introduced

by Henry Ford, also known as the Ford

Production System

*6 Taylorism
 Also called Scientific Management, this

approach was i n it i ated by Freder ick

Winslow Taylor, an American engineer,

and aims to improve productivity through

the scientific analysis of a production or

operational system. It is the origin of TQC

(Total Quality Control) activities in Japan. It

is also significant in the history of thought

for having initiated rationalism in technology

52

S C I E N C E & T E C H N O L O G Y T R E N D S

53

Q U A R T E R L Y R E V I E W N o . 1 4 / J a n u a r y 2 0 0 5

soon after the end of rationalism in science.

*7 Lean production
 This was developed at MIT, the U.S., from

the Toyota Production System. It emphasizes

the elimination of “muda,” or waste.

*8 Agile production
 Although associated with lean production,

this concept originates in the U.S. Instead of

eliminating “muda,” it stresses flexibility and

agility.

*9 TOC (Theory of Constraints)
 A production management system proposed

by Eliyahu Goldratt. It is similar to lean

production but focuses on the performance

of the whole system.

References

[1] A p a n e l a t X P 2 0 0 3 , “ Te s t D r i v e n

Development (TDD),” Steven Fraser, Kent

Beck, Bill Caputo, Tim Mackinnon, James

Newkirk, Charlie Poole :

 http://www.xp2003.org/panels/fraser.html

[2] Barry Boehm and Richard Turner, “Balancing

Agil ity and Discipline: A Guide for the

Perplexed,” 2004; A Japanese translation, UL

Systems, Inc., 2004

[3] A l i s t a i r C o ck bu r n , “A g i l e S o f t wa r e

Development”; A Japanese translation,

Pearson Education Japan, 2002

[4] Michael Cusumano, “Strategy for Software

Companies: What to Think About,” An

invited talk at XP 2003, http://www.xp

2003.org/keyspeeches/cusumano.html.,

cf. Michael Cusumano, “The Business of

Software: What Every Manager, Programmer,

and Entrepreneur Must Know to Thrive and

Survive in Good Times and Bad,” Free Press,

2004

[5] Takahiro Fujimoto, “Capability -Building

Competition: Why Is the Japanese Auto

Industry Strong?”, Chuko shinsho 1700 (in

Japanese)

[6] Susumu Hayashi, “Program Verif ication

Theory”, Kyoritsu Shuppan Co., 1995 (in

Japanese)

[7] Susumu Hayashi, Pan YiBing, Masami Sato,

et al., “Test Driven Development of UML

Models with SMART Modeling System,” in

Proceedings of UML 2004, Lecture Notes in

Computer Science, Springer-Verlag, 2004.

[8] Mary Poppendieck and Tom Poppendieck,

“Lean Software Development: An Agile

To o l k i t f o r S o f t w a r e D e ve l o p m e n t

Managers.”

[9] James P. Womack, et al., “The Machine

That Changed the World: The Story of Lean

Production”

[10] J ap a n E l e c t r o n ic s a nd I n fo r m a t io n

Tech nolog y I ndu s t r i e s A s soc i a t ion ,

“Software Exports and Imports of 2000,” July

31, 2002 :

 http://it.jeita.or.jp/statistics/software/2000/

[11] Yoshiro Yano, “Max Weber’s Methodological

Rationalism”, Sobunsha Publishing Co., 2004

(in Japanese)

[12] E l i zabeth Hu l l , Ken Jackson, Jeremy

D ick , “Re qu i r e me nt s E ng i ne e r i ng ,”

Springer-Verlag, 2002

(Original Japanese version: published in September 2004)

