
53

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

5

Research Trends in Technology for High-Reliability Software
— Toward the Establishment of Basic Software Technology —

MASAO WATARI

Information and Communications Research Unit

5.1 Introduction

Today, 50 years after the emergence of the

computer, the device comes in a variety of forms

such as supercomputers, personal computers and

microprocessors embedded in assorted hardware.

As the use of computers has already deeply

penetrated into a wide range of activities of

businesses, society and individuals, a failure in a

computer system has a significant impact. Some of

the recent examples still fresh in our memory are

the failure in a banking system and the

malfunction in a cellular phone system. Banking

systems consist of huge and complicated

computer systems so as to process via networks

various types of transactions requested through

automatic teller machines (ATMs). On the other

hand, in the case of cellular phones, more

complex and larger software programs are used as

they not only serve as phones but also offer many

other functions including Web browsing, mail

handling, special ring tones and photo taking. An

increase in the complexity and size of software

has led to the challenge of how to ensure

reliability.

A system can be reliable only when reliable

hardware, reliable software and reliable system

administration are combined. Although hardware

reliability has been steadily improving with

technical advances, there remain a number of

problems in the reliability of software, because

software production involves a lot of manual work

and thus tends to be subjected to instability. In the

past age of mainframes (large computer systems),

individual software engineers’ craftsmanship

contributed to the development of large-scale,

complex software programs with high quality.

Compared to this, today’s software has grown

even greater in both size and complexity and is

more likely to be constructed by combining

widely used software components (commercially

available or free software) to speed up the

development process, specification and interface

descriptions between components or between

modules are very important for ensuring

reliability. Meanwhile, as technologies for software

reliability have not made major progress since the

mainframe age, it is hoped that new reliability

technologies are researched and developed.

This report intends to explain the trends in the

research on software reliability technologies and

identify the problems to be tackled to improve

such technologies in Japan.

5.2 Changes in software
production

5.2.1 Software:
Moves from “Creation” to “Combination”

In the era of mainframes, software programs

were written in different programming languages

selected to meet the objective and were run on

operating systems that were dependent on

hardware systems and specifically designed by

individual companies. Under such circumstances

there were very few commercially-available

software components so that software programs

were usually developed from scratch. Later, when

hardware became downsized to usher in the age

of workstations and personal computers, general-

purpose operating systems independent of

hardware, such as UNIX and Windows, came into

widespread use. More recently, in the Internet era

driven by the widespread availability of the Web,

applications that are independent of any particular

54

S C I E N C E & T E C H N O L O G Y T R E N D S

operating system or platform (i.e., applications

capable of running on a common virtual machine)

have spread.

In the domain of programming languages, where

a variety of languages have been used, such as

FORTRAN for numeric computations, and COBOL

for business transactions, object-oriented

languages including C++ and Java have recently

become widespread and standard. The spread of

object-oriented languages allowed to divide

software programs into highly independent

software modules so that these made easy to

construct software components as well as to

distribute and reuse of software. In addition to

this, middleware, a type of software that functions

as a library shared across applications, has come to

be provided for each individual industry field to

intermediate between the operating system and

applications, so that application programs can

simply call and run it. Such progress has allowed

software engineers to program by composing

“software parts,” as if joining blocks. In other

words, the software development process has

changed from a task of “creation” to that of

“combination.”The change has allowed even large-

scale software to be developed in a short period

of time, resulting in an increase in the productivity

of software. Figure 1 shows a history of software

technology.

5.2.2 Need for improvement of software
reliability

(1) Changes in software development

Since many recent software products are

required to provide a large number of functions

and thereby have become increasingly compli-

cated and enlarged, improvement of their

reliability is highly demanded. For example, a

cellular phone system consists of over several

million lines of program code. Given that one

software engineer is said to be able to handle up

to about 10,000 lines, development of such

software involves a significant number of people.

They work at multiple locations of multiple

companies, sometimes even including overseas

sites to reduce development costs. Thus develop-

ment process management to maintain good

communication among engineers and among

different locations is essential, as it determines the

quality of the software being developed.

Furthermore, rapidly changing IT product

markets call for rapid specification changes,

shorter development periods and enhanced

system maintainability. Such pressure from the

market has in some cases resulted in incomplete

testing forced by a short delivery time, careless

checking for consistency following a specification

change, and insufficient maintenance capability.

There is a great risk that development may take

Figure 1: History of software technology

precedence over reliability.

On the other hand, productivity has been

increasing through the use of software compo-

nents that are more widely available in the market.

These commercial software parts, however, often

cause such problems as an inconsistent interface

or incompatibilities with specifications due to

version differences.The risk deriving from the use

of black-box software components should be well

recognized.

(2) Reliability of open source software

Recently, the use of open source software has

been growing. It has been attracting attention

since Linux, a UNIX-based operating system for

PCs, was developed using the open source

software method in 1990. Following this, basic

software for Internet-based distributed systems

and many other software programs have been

developed by using the same method. Since as to

the open source software its specification and

source code are available to the public, anybody

can verify its mechanism. Since the open source

software is developed by a large number of

volunteers who form a community and work in

parallel, superior suggestions will meet with quick

feedback, leading to a better final product. Since

the community members may act as preceding

users of the software they have developed,

widespread use of the software will be promoted.

Meanwhile, accessibility to software mecha-

nisms has come to be demanded in order to

resolve security problems caused by hackers and

the like. This is another factor that encourages

software product makers to adopt the open

source software programs.

While the advantages of the open source

software as described above have been highlight-

ed, quality of such software is not ensured because

it is basically provided free of charge.There would

be no problem in quality if the open source

software had undergone extensive testing during

the development stage and been tried by many

users to improve reliability. However, as open

source software is usually developed by a group of

volunteers without any compensation, its

reliability needs to be verified before use. It should

be aware that unverified software will take

considerable man-hours for inspection and testing.

The factors that affect lowering software

reliability, which were explained above, are

summarized in Table 1.

5.3 Software reliability
technology

As shown in Table 2, technologies to ensure

software’s reliability are divided into three fields.

Those are support technologies at each process of

software development, management technologies

for software development process, and models

and methods for software development. These

technologies are described below.

55

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

Too many functions and too much complexity in a system
Frequent specification changes
Short delivery periods that urge careless testing
Distributed development teams including overseas locations
Increase in black-box software components
Increase in software whose quality is not verified (open source software, software
components)

Table 1: Factors attributing to lowering software reliability

Design Process

UML
Formal methods

Programming Process

Process Management

CMM, TQC

Development Models/Methods

Spiral model for software development, XP

Object-oriented language

Test Process

Exhaustive logic test
Boundary value analysis
State transition test

Table 2: Software reliability technologies

56

S C I E N C E & T E C H N O L O G Y T R E N D S

5.3.1 Object-oriented language
An object-oriented language is a programming

language that allows a program and its

accompanying data to exist as a self-contained

block (called an object). In an object-oriented

language, operations are realized through

exchanges of messages between objects. In this

object-oriented scheme, data can be hidden

(encapsulated) within an object so that they can

be protected from unwanted access to ensure

higher reliability. Reliability can also be improved

by allowing clear description of the object’s

interface, which is written explicitly by the

programmer in the object-oriented language.

A programming language, on the other hand,

must be flexible because it is expected to be able

to describe any kind of specification. The

f lexibility can sometimes leave room for

inconsistency in the interface between objects,

resulting in failure to ensure reliability. That is to

say, any programming language by itself cannot

ensure reliability with flexibility.

5.3.2 System design description
To construct reliable software, a clear design

concept and a good grasp of the design among the

members involved in the development project are

indispensable in any process of software

development. As a method to describe system

design blueprints, the Unified Modeling Language

(UML) was standardized in 1997 by the Object

Management Group (OMG), a standardization

body for object-or iented languages. Many

methodologies for describing systems had

coexisted until the developers (See Footnote 1) of

the three renowned methodologies developed

UML with a view to unifying them into a single

standard. UML was comprehensive description by

compiling numerous methods that had been used

for software design. UML allows the members of

development teams to understand the system

design in the common language.

UML, as it only provides a method to describe

software designs, does not restrict the freedom of

design concepts.Therefore, any kind of system can

be described, although reliability of a resulting

system is not necessarily ensured.

5.3.3 Formal methods
The formal method, a technique that is based on

mathematical theories such as algebraic theory, set

theory and graph algorithm, can help describe

requirements with mathematical precision. In

addition, it allows developers to test and verify the

behavior of the developed software using

mathematical theories. As long as the program’s

specification is written using a formal method, any

specification error detected or any specification

change that occurs during development will result

in modification that is conducted correctly in

mathematical terms. Since specification changes

and partial modifications may cause unexpected

impacts to other part of the system, such events

are considered a major factor of reduced

reliability. Under the present circumstances where

defects are resolved case by case based on each

engineer’s experience, how to ensure reliability

remains a challenge in using formal methods.

Through research on formal methods, which

was initiated in the early 1970s, a variety of

methods for description and verification of system

specifications have been developed [1],[2].

(1) Formal specification language

A formal specification language, as it allows

software developers to write specifications based

on mathematical theories, ensures that described

specifications are free from errors and conflicts.A

number of specification languages of this type

have been developed mainly in Europe.

Formal specification languages are divided into

two categories. One is the model-or iented

language, which is used to describe software

specifications by modeling on the basis of set

theory and the like, and the other is the property-

oriented language, in which data properties are

specified based on algebraic theory.

Well-known, model-oriented specification

languages include the Z notation (See Footnote 2),

developed at Oxford University, Britain, the B-

Footnote 1:
With the intention of standardizing system

description methods, UML was developed by
Grady Booch, the designer of the Booch
method, James Rumbaugh, who advocated the
Object Modeling Technique (OMT), and Ivar
Jacobson, who proposed Use Case.

Method (See Footnote 3), originated in France, and

VDM (Vienna Development Method)(See Footnote

4), designed at IBM’s Vienna Laboratory. Among

property-oriented specification languages, on the

other hand, typical ones are OBJ (See Footnote 5),

whose development initiated in around 1977 at

the University of California and the Stanford

Research Institute (now SRI International), and

CafeOBJ (See Footnote 6), an extension of OBJ

whose development started in about 1995 at the

Japan Advanced Institute of Science and

Technology.

The Z notation, a typical model-or iented

language, permits a system to be specified as a

state machine (the state space, the initial state, and

the operations) so as to let the developer know

mathematically in advance all possible states of

the system that will take. Using a single space, this

method can describe specifications for serial

processing systems but not that for distributed

cooperative processing systems. On the other

hand, CafeOBJ, a property-oriented language, can

express data and processes in a uniform manner

based on equational logic, enabling to describe or

verify specifications of distributed processing

systems. A problem in property-oriented

languages, which resemble the functional

programming language, is their low ability of

expression. In summary, model-oriented languages

permit expression with relatively high degrees of

freedom while restricting analysis and verification.

By contrast, property-oriented languages, although

lacking expressive power, facilitate analysis and

verification.

There are a variety of formal specification

languages supporting various mathematical

models but they are not unified. Moreover,

understanding description written in these

languages takes more time because they are

written primarily using mathematical notations,

which are far away from natural language. For

these reasons, formal specification languages have

been applied only for the critical areas that require

high reliability and have yet to come into wide

use.

(2) Checking and verification tools based on

formal methods

Researches for solving practical problems by

using formal methods are actively conducted in

the U.S., and have led to the creation of tools that

can check specifications and operations of

programs or that can verify such specifications

and programs do not cause malfunctions. These

tools are divided into two categories. The first

category consists of model checking tools based

on state searching algorithms, such as SPIN (See

Footnote 7), developed at Bell Labs, U.S., in 1980,

and SMV (Symbolic Model Verifier) (See Footnote

8), originated at Carnegie Mellon University, U.S.,

in 1987. The other category is comprised of

57

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

Footnote 2:
The Z notation is a language developed at

the Programming Research Group at Oxford
University in the late 1970s. It is used to
specify a system as a state machine (the state
space, the initial state, and the operations that
affect the state space) on the basis of set
theory.

Footnote 3:
The B-Method is a software development

tool that has been developed based on the Z
notation by Jean-Raymond Abrial, in France, in
the mid 1980s.

Footnote 4:
VDM has its roots in the research conducted

at IBM's Vienna Laboratory to verify the design
correctness of the PL/I compiler in 1974.VDM
creates a mathematical model consisting of
data sets, lists and mappings, and describes a
system specification as changes in the state of
the model.

Footnote 5:
OBJ has been developed mainly by Joseph

Goguen at the University of California (later at
SRI International and then Oxford University)
since 1977. OBJ is a formal specification
language that expresses abstract data types
strictly, using algebraic theory.

Footnote 6:
CafeOBJ, an extension of OBJ, has been

developed by an international team led by the
Japan Advanced Institute of Science and
Technology as a language to specify a system's
operations by modeling data and processes
uniformly using hidden algebra. It allows to
describe or verify specifications of distributed
processing systems.

verification tools using theorem proving, among

which PVS (Prototype Verification System) (See

Footnote 9), developed at SRI International, U.S., in

the mid 1980s, is well known.

The model checking tools based on state

searching, while permitting automatic verification,

can only be used for systems that can be described

as finite-state transition models.Also, the tools may

not be able to run if the target software is too

large, because the number of states may increase

to a level that causes state explosion. On the other

hand, verification tools using theorem proving

provide more versatility, although they have not

been automated for verification because theorems

need to be selected in accordance with the target

software’s properties.

Similarly, in Japan, researchers at institutions

such as the Tokyo Institute of Technology and the

University of Tokyo have been working on studies

for a method to verify system operations using

logical algebra.They developed a method to verify

that a system does not stop operating at any type

of external input and used it to verify security

authentication protocols.There are other ongoing

research projects at the Japan Advanced Institute

of Science and Technology and other institutions,

in which verification techniques for object-

oriented model analysis have been developed by

extending theorem proving methods, followed by

studies on the verification of the state-transition

models used for embedded software.

While diverse checking/verification tools have

been developed as described above, these tools

are not capable of checking/verifying the entire

system. An appropriate tool can be selected for

checking/verifying a part that should be cut out

appropriately from the whole system. The

necessity of the basic knowledge about the

mechanism of formal methods for using the tools

is inhibiting the spread of the tools.

(3) Application examples of formal methods

As shown in Table 3, formal methods often find

practical application in the design or the

verification of systems in which safety takes

precedence over cost. However, it is noticeable

that these applications are limited to relatively

small-scale systems.What are hoped for toward the

future are methods applicable to larger and more

complex systems, friendlier to users, and to

develop better tools for software environments

based on object-oriented languages, which are the

mainstream of today.

5.3.4 Testing technologies
Efficient testing techniques are essential

because it is said that over half the man-hours for a

system development project are necessary for

testing. Preliminary arrangements such as

embedding checkpoints for testing into programs

during the development, are important. As for the

test tools, methods have been developed based on

mathematics such as algebra and graph theory.

Particularly, for object-oriented programs in which

operations can be dynamically defined at the time

of running the program (dynamic binding), tools

based on state transition diagrams have been

devised as techniques to test such operations in

advance. Some of the testing technologies using

graph theory or algebra are described below.

(1) Path test

In this method, control flows are extracted from

programs to design test cases.Test cases that cover

58

S C I E N C E & T E C H N O L O G Y T R E N D S

Footnote 7:
Originating from the development at Bell

Labs, U.S., in 1980, SPIN is a verification tool

that performs exhaustive checks over the all

possible operations of a system using linear

temporal logic, and verifies that the program

works properly without any failure. SPIN can

be used for the verification of the

asynchronous operations in distr ibuted

systems.

Footnote 8:
SMV is a checking tool proposed by K.

McMillan at Carnegie Mellon University (CMU),

U.S., in 1987. It efficiently checks system

operations by compressing the subject's state

space using the binary decision diagram.

Footnote 9:
PVS is a general-purpose, theorem-proving

tool that was developed by SRI International,

U.S., in the mid 1980s. Through proofs based

on high-order logic, PVS verifies consistency

and integrity of specified functions.

59

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

all control flows are generated, so that any part of

the source code can be checked at least once.

(2) Exhaustive logic test

Using combinational theory, test cases

containing all possible conditions for logic

decisions are automatically created.

(3) State transition test

Specifications are described by state transition

diagrams and test cases are created for covering all

transitions. In the case of a network protocol

verification or the like, where the issue of parallel

processing is involved, tokens in the Petrinet are

assigned values in order to detect parallel

processing errors or to analyze the properties,

because of avoiding the explosion of the state

space.

(4) Data flow test

Control flow graphs are used to detect errors in

the data flow.

(5) Boundary value analysis

An analyzer checks whether the system has

wrong operations or not at the maximum value,

zero and the minimum value.

In carrying out tests sufficient time should be

invested for finding and eliminating bugs (program

errors) to confirm that the test is sufficient for

reducing the bugs to a minimum. Furthermore, in

order to test the system efficiently in a limited

development period, it is also essential to have a

strategy on the test procedure, for example, taking

enough time first to test the components critical

to the operation of the system, followed by testing

the components that are not associated with the

system’s primary operations.

5.3.5 Software process management techniques
To develop high-quality system software, its

development process (software process) needs to

be well managed. In the case of the development

of a large-scale system, in particular, which is

usually conducted by a large number of develop-

ers working at multiple distributed places, poor

process management will lead to poor-quality

software or delays in the development schedule.

Traditionally, in Japan, quality improvements of

software are, just as those of hardware, have been

driven by the sharing of know-how through small

group activities conducted as part of total quality

control activities (TQC).

On the other hand, in the U.S., where the

mobility of software engineers is high, quality

control methods that are strongly dependent on

personal capacities have not been successful,

producing only a limited effect. Instead of them,

the Capability Maturity Model for Software (CMM)

has been developed as a technique to accumulate

Application Positive Effect

U.S.

Formal
Method

Traffic Alert and Collision Avoidance System
(TCAS) II

Europe

Japan

Driverless metro system in Paris

Air traffic control system in London

Customer information management system
for IBM Europe

Railway switch control system

Behavior specification for Enterprise Java
Beans

Ensured safety combined with increased
traffic capacity

Identified problems in the description of the
EJB 1.1 specification

VDM

SPIN

B-Method

VDM

Z notation

Ensured safety

More than a 10-fold improvement in quality

Cost reduction by 9% and improved quality

Fault protection for the Saturn probe

Program for AT&T’s switches

RSML

PVS

SPIN

Formal method used for designing the
specifications for collision avoidance

Verification of the fault protection function

Exhaustive testing to identify incorrect
operations

Table 3: Examples of formal method application

VDM : Vienna Development Method
RSML : Requirements State Machine Language
PVS : Prototype Verification System

the know-how of quality control with emphasis

on organizations rather than individuals.The CMM

requires organizations engaged in software

development to define the functions required for

the level (maturity) of the quality assurance in

order to make efforts to improve these levels. By

measuring the maturity, the degree of reliability of

the organization or the vendor can be evaluated.

The CMM was developed at the Software

Engineering Institute of Carnegie Mellon

University in response to a request from the U.S.

Department of Defense and made available to the

public in 1987. Initially, while having found major

application in the development of defense-related

products, the CMM has become widely used

across the world for its ability to provide a

measure of software quality improvement. It has

already been adopted in over 40 countries

including India and China, where a considerable

number of organizations are actively implement-

ing the method.

The accumulation of quality improvement

know-how promoted through small group

activities in Japan, which is a bottom-up approach,

has even been reflected into part of the CMM and

international quality assurance standards (ISO

9000 series).The CMM requests the improvement

of the organization’s capacities which should be

promoted by top-down activities. It is noteworthy

that this turnaround in the approach from bottom-

up to top-down was initiated by the U.S.

5.3.6 Software development models
Among other software development models,

Extreme Programming (XP) and the spiral model

have been receiving attention these days.Although

not intended for the improvement of reliability,

these new styles of development have contributed

to enhanced reliability.

(1) Spiral model for software development

In conventional software development, where

the waterfall model was used as the design, coding

and testing processes to be carried out step by

step, project management was easy. In such an

approach, however, it was not until later that

errors (bugs) in the specification and the program

were found, since the testing process was done

after all other processes. In addition, there were

often delays in development because program-

ming did not start until the entire specification

was determined. Specification changes halfway

through development meant rewriting the whole

code, resulting in a significant increase in

workloads.

In the spiral model (also known as the

incremental model), firstly the core of the system

is taken out to be designed, coded and tested.

Following this stage, peripheral components are

developed and added one by one.This allows the

core or the most important part of the system to

undergo extensive testing from an early phase of

the development so that the remaining compo-

nents can be developed taking the test results into

account.

(2) Extreme Programming (XP)

Extreme Programming (XP) has an attention as a

new style of development since it was advocated

by Kent Beck of the U.S. in 1999 with an eye to

quicker development with high-quality. The XP

features “paired programming” and “testing first.”

“Paired programming” is a practice in which a

person in charge of program coding from the

specifications works together with a person who

tests the program.Working this way translates into

half the man-hours being spent for testing.“Testing

first” indicates that developers design tests that

satisfy the specifications before they write the

actual code of the program.The coding and testing

cycle is repeated until the code passes all the

tests. In addition to these two features, the XP has

the conventions, such as simple design, collective

ownership of the code and open work environ-

ments, which have been extracted from past

experiences, and requires the members of the

development team to practice them to the

maximum extent, thus the name “Extreme” came

from.

The XP is an excellent test-oriented develop-

ment model that allows the development of highly

reliable software. However, this development

model is suited only for relatively small-scale

software as it divides a system into units that can

be constructed through paired programming.

60

S C I E N C E & T E C H N O L O G Y T R E N D S

5.4 Trends in the promotion
of research into software
reliability technology in
Japan, the U.S. and Europe

(1) United States

As the constant leader in software research, the

U.S. maintains overwhelming industrial competi-

tiveness. In the area of software reliability

technology, DARPA and NSF have been playing

major roles in actively subsidizing research

projects in military and basic research fields. The

technologies accumulated through these research

and development activities have been aggressively

transferred to industry through collaboration

among business, academia and government and

have resulted in the emergence of new-generation

products. Furthermore, since the 9.11 attacks,

investments in security and reliability have

swollen due to increased awareness of homeland

security.

Specifically, the U.S. government has been

actively implementing programs to support

research efforts, such as “High-Confidence

Software and Systems,” a program that intends to

ensure reliability, security and safety for mission-

critical systems, and “Software Design and

Productivity,” a program that seeks to improve

software cost efficiency through the application of

sciences and engineering.

(2) Europe

Although the software industry in Europe is not

as brilliant as the U.S. counterpart, the research in

Europe is focused on academic methods such as

techniques on the basis of fundamental math-

ematical theories. The research institutions that

proposed the Z formal specification language and

VDM are both in Europe. Studies on methods to

combine the formal description with UML, a

language used for specification design, are also

actively conducted in Europe.

The EU has also been consistently subsidizing

research projects on software reliability technolo-

gy, as seen in the targets of a range of programs

from the European Commission’s Information

Technologies Research Programme (ESPRIT),

which launched in 1985, to the Sixth Framework

Programme (FP6), which was started in 2002.

(3) Japan

In Japan, industry has secured reliability

technologies by acquiring concepts and research

results from the U.S. While many of the past

government projects were meant for technical

catch-up, recently projects have been launched

intending to cultivate original technologies and

fundamental technologies. The Japan Science and

Technology Corporation (JST), for example,

addresses challenges in software reliability based

on basic theory through its plans in the category

of “Function and Structure” (for the 2000–2005

period) for “Precursory Research for Embryonic

Science and Technology (Sakigake 21),” a program

intended for nurturing young scientists. The

Information-technology Promotion Agency (IPA),

in its “Next Generation Software Development”

project, which aims to develop, through industry-

academia collaboration, software that will become

a de facto standard in the global market, supports

“High-Reliability and High-Security Software”

(2002–2007). Moreover, the Ministry of Education,

Culture, Sports, Science and Technology promotes

development of technology to produce highly

reliable software with high productivity as part of

the “Comprehensive Development of the

Infrastructure Software for e-Society” (FY 2003-

2007) program.The program seeks to construct an

IT society where people can participate in with a

feeling of security by developing software that

serves as the key to building sophisticated

information and communications systems.

As described above, Europe focuses on

theoretical research while the U.S. stresses

research into modeling with a view to application

for practical problems.The mobility of researchers

between Europe and the U.S. is so high that there

has been a trend that theories are studied in

Europe and then applied for practical use in the

U.S. In Japan, while universities have been taking

the initiative in basic researches through small-

scale projects to proof their research model, the

results have not been applied to practical

problems.Their researches have not gone beyond

so-called toy models, with little interaction with

industry and little effort to address practical

challenges. For Japan to join the Europe-U.S.

61

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

partnership and expand its contributions to

technical advancement, simply presenting theories

is not enough, but proposing theories that can

provide solutions to practical issues is essential.

Industries are reluctant to conduct research and

development of software reliability technology, as

it is not likely to bring in profits by itself directly.

In Europe and the U.S., the governments have

been continuously cultivating this technology as a

fundamental technology. Such national-level

uninterrupted steady support is needed in Japan

as well.

5.5 Challenges to enhance
software reliability

What are necessary to enhance software

reliability are to develop reliability technology

itself and to make full use of high-reliability

technology in developing software. In terms of

adopting reliability technologies, Japan has already

imported the XP, the CMM, both mentioned earlier,

and many other technologies from the U.S. When

importing technology, however, corporate cultures

and professional cultures should be taken into

consideration because there are cultural aspects

involved in software development and manage-

ment.

Meanwhile, although reliability technology itself

has been making steady progress, further

development is hoped for as its current appli-

cation is limited. Improving reliability in upper

processes, where the system is designed, is

particularly important, considering that upper

process reliability has a significant impact on the

succeeding processes. Rigorously checking

specification errors during the design process, for

instance, would prevent errors from being

conveyed to later stages, leading to reduced man-

hours for testing. For another approach, if the

system specification was described by using a

formal method, reliability would be ensured even

after specification changes because revisions

could be reviewed almost automatically by using

formal method verifiers.

In reality, however, formal methods have only

been applied to limited cases such as safety-critical

systems, as industrial use of formal methods still

requires considerable time and effort. There are a

number of reasons behind this. The ability of

expression of formal specification languages is

poorer than that of ordinary programming

languages. There are limits in the scale of

applicable problems, because a large-scale

problem may need a massive volume of calcu-

lation. And skills for an formal method are

indispensable to describe specifications by the

formal method.

Meanwhile, the improvement of reliability is

also posing challenges in the domain of

“embedded software,” software that is embedded

into devices such as home information appliances,

automobiles and control systems, which are fields

where Japan has a leading edge. Since embedded

software has to have real time functions and to

take out full power of limited hardware resources,

software engineers for its development have been

required to have a certain level of craftsmanship.

Thus, the meticulous nature of the Japanese has

helped in the development of high-performance

and high-quality software products.As demonstrat-

ed by the fact that of the more than five billion

microprocessors (including small processors used

for control purposes) produced annually, half use

TRON, which originated in Japan, as the operating

system, indicating how Japan has been leading the

world in the field of embedded software.

Even in the embedded software sphere,

however, software programs have come to be

required to provide more functions as the

performance of hardware enhances, and have

been forced to use a growing number of off-the-

shelf software components. Since the U.S. has an

overwhelming power in the area of software

components, the embedded software industry is

also now under the influence of the U.S. As the

embedded system is usually sold in high volume

and thereby a defect would have a significant

impact, reliability is a cr itical element of

embedded software products. This suggests that

one of the measures Japan could take to maintain

its leadership in the field of embedded software is

to establish an innovative reliability technology.

A step toward this goal is to promote attempts

actively to apply the basic theory of formal

methods that has been continuously studied at

universities in Japan to practical problems as U.S.

has been doing. An effort needs to be made to

62

S C I E N C E & T E C H N O L O G Y T R E N D S

identify the limitations contained in their

fundamental research results and formulate the

next innovative theories through the application

of such research outcomes to practical problems.

The business community in turn would be asked

to present real world problems to be jointly

studied.

In addition to this, for the purpose of competing

with the U.S. research activities in the information

technology field, Japan needs to have a greater

pool of research talent in the field. According to

statistics (See Footnote 10) on the number of

academic students in Japan and the U.S., the U.S.

surpasses Japan in the number of persons who

received in 2000 bachelor’s, master’s and doctoral

degrees in information and communication

disciplines (a combined total of Electr ical

Engineering and Mathematical/Computer Science)

by 1.8 times, 3.0 times and 4.7 times, respectively.

This suggests the need to increase the number of

academic students. On the other hand, China

expanding its capacity of graduate schools had

300,000 graduate students (See Footnote 11) for

fiscal year 2000, which is well above Japan’s same

year figure of 210,000. This is a fact that should

make Japan realize the need for reinforcement in

this area not only in volume but also in quality. In

conducting research in information technology

fields, Japan has traditionally been playing catch-

up with Europe and the U.S., but a time for catch-

up is over now that industry is calling for

innovative new technologies. Therefore, with

respect to the education of scientists, nurturing

people who excels at one thing is needed rather

than improving average levels or overcoming

weaknesses.We should be aware that we are in an

age where strong points must be further

strengthened and weaknesses should be

complemented through partnerships with others.

5.6 Conclusion

The common feature of products that are highly

competitive in the Japanese hardware industry is

not low cost but high quality and reliability.

Similarly, in the software industry, improvement of

reliability is one of the inevitable challenges

toward further industrial development. While

software programs grow increasingly complex and

massive year after year, software products are

given shorter life cycles and upgraded more

frequently to offer improved specifications. In this

context, an environment in which specification

changes could be made in shorter periods while

ensuring high reliability is demanded.To this end,

advancement of reliability technology is hoped to

be realized through the use of techniques based

on mathematical theories.

In the past, research projects on reliability

technology at Japanese universities have tended to

end with the establishment of basic theory,

without addressing practical problems. Mean-

while, most Japanese companies have imported

fundamental technologies from the U.S., so as to

develop them into forms that are suited for the

Japanese market. If Japan continues to be like this,

without having original technologies of its own,

the country might lose its competitiveness in the

software industry to the U.S. in new technology

and to China and India in cost.

What Japan needs to do to have unique

reliability technologies is to tackle the challenge of

63

Q U A R T E R L Y R E V I E W N o . 8 / J u l y 2 0 0 3

Footnote 10:
The data for Japan is based on the number of

the persons who completed bachelor’s,

master’s and doctoral courses in Electrical

Engineering, Department of Engineering, and

in Mathematics, Department of Science, in

March 2001, and was provided by the Ministry

of Education, Culture, Sports, Science and

Technology in its survey results on school

education (for higher education institutions).

Those who left school after finishing doctoral

courses without earning any doctoral degree

have been excluded. The data for the U.S. is

based on the number of the persons who

received in 2000 bachelor’s, master’s and

doctoral degrees in Electrical Engineering and

Mathematical/Computer Science, and was

provided by the NSF Division of Science

Resources Statistics.

Footnote 11:
The source is “International Comparison of

Educational Indexes” for 2002 and 2003

provided by the Ministry of Education, Culture,

Sports, Science and Technology.

64

S C I E N C E & T E C H N O L O G Y T R E N D S

applying the results of its original basic research to

practical problems through industry-academia

collaboration. When such applied research effort

directed toward practical problems requires

overwhelmingly greater amounts of research funds

compared to the funds for basic research. While

industries hesitate about reliability technology

research, which would not directly lead to cost

reductions, government support becomes vital in

this area. Furthermore, if a virtuous cycle could be

created in which technical progress from the

basics to applications is followed by the feedback

to research themes from the application side to

the basics, it would truly enhance reliability

technology.

Research on reliability technology requires

unrelenting improvements supported by sober

and continuous effort. Although, in IT-related

fields, attention is typically paid to integration

technologies to create new business models or

new systems, priority should also be given to the

endeavor intended for the steady development of

basic technology, such as reliability technology,

that is underlying IT and exerts an influence on a

broad range of fields.

Acknowledgements

The author would like to express sincere thanks

to the following individuals for providing their

valuable opinions on trends in software reliability

technology for the preparation of this paper: Prof.

Takuya Katayama and Prof. Kokichi Futatsugi,

Japan Advanced Institute of Science and

Technology, Prof. Katsuro Inoue, Osaka University,

Prof. Kenichi Matsumoto, Nara Institute of Science

and Technology, and Prof. Shin Nakajima, Hosei

University.

References

[1] E. M. Clarke, J. M.Wing,“Formal Method: State

of the Art and Future Directions,” ACM

Computing Survey, Dec. 1996.

[2] Research Institute of Software Engineering,

“Studies on the Strategic Promotion of

Software Engineering,” Mar. 2002 (in

Japanese).

(Original Japanese version: published in March 2003)

