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科学・技術・産業データの接続と産業の科学集約度の測定 
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要旨 

 本論文では、科学論文（科学知識）、特許（技術知識）、及び経済センサス（産業）のデータを

組み合わせて、日本の産業の科学集約度を測るための新しい指標を提示した。この指標は、特許

による非特許文献の引用情報を用いた既存のサイエンス・リンケージ指標では捉えることができ

ない、大学等のアカデミアが出願する特許によって生じる科学と産業界の相互作用を反映してい

る。アカデミアの特許出願活動が活発になり、サイエンス・ベース産業以外の分野でも、アカデ

ミアの科学知識が活用されるようになった。さらに、ここ 10 年ほどの間に、全ての学術分野に

おいて、その科学知識が産業のイノベーションでますます利用されるようになった。サイエンス

への公的支援は産業のイノベーションを促進するための重要な政策であり、学術界と産業界の相

互交流を促進する政策が企業による科学知識の更なる活用に必要とされていることを、我々の研

究は再確認した。 
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ABSTRACT 

This paper presents new indicators measuring the science intensity of industry in Japan, linking a scientific 

paper database (science), patent information (technology), and economic census data (industry). The new 

indicators reflect the interaction between science and industry, via academic patenting activities, which 

cannot be measured by an existing indicator of science linkage - non-patent literature (NPL) citations by 

patents. As the academic sector gets more involved in patenting activities, its scientific knowledge is 

utilized by industries that are not categorized as science-based. Additionally, it was revealed that scientific 

knowledge has been increasingly used for industrial innovation over the last 10 years, across all academic 

disciplines. Our study reiterates that public support of science is essential for industrial innovation. 
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1. はじめに 

産業のイノベーション・プロセスにおいて科学的知識の重要性が高まっている。ゲノム・

サイエンスが医薬品産業の研究開発プロセスを大きく変化させ、また、LSI 製造プロセスの

微細化にはナノ・スケールでの物質の物性に関する理解が不可欠となった。情報技術の進歩

が社会経済に大きなインパクトを与えるようになったことや、ビッグデータ分析がビジネ

スやマネジメントについてのより深い理解に貢献するようになったことなども典型的な例

として挙げられるだろう。 

高等教育機関や公的研究機関などのアカデミアは財政制約が厳しい中でも大規模な公的

資金に補助されている。こうした公的資金による研究開発の経済へのインパクトを理解す

ることへの政策的関心が高まっており、この論文では産業のイノベーションにおけるアカ

デミアの貢献度を計測した。 

アカデミアの多くの研究者は論文だけでなく特許も生み出しており、科学的知識だけで

なく、産業上利用可能な技術的知識も保有している。大多数の特許は企業によって出願され

ているが、特許出願につながる研究開発の過程ではアカデミアで生産された知識が重要な

役割を果たしていると考えられる。以下では、科学、技術、産業、及びアカデミアと企業の

間のリンケージを理解するための概念フレームワークを提示し、科学、技術、及び産業に関

するデータベースを接続して試みた新しい計測手法について説明する（図 1 参照）。 

 

図 1 概念フレームワーク 
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2. データ 

特許のサイエンス・リンケージ指標として、伝統的には非特許文献引用数（特許による学

術論文の引用数）が用いられてきた。今回、我々が注目したのは、アカデミアの研究者がも

つ科学的・技術的知識が、アカデミアと企業による共同研究（企業とアカデミアの共同出願

特許）や、アカデミアの技術的知識が特許という形で公開されて企業の研究開発に活用され

る（企業特許がアカデミアの特許を引用）という経路で生じる知識フローであり、その規模

を測る指標を作成するために、論文データベース（エルゼビア社の Scopus）、特許データベ

ース、および経済センサスを活用した。 

アカデミアの研究者の人的資本に体化されている科学と技術のリンケージを捉えるため

に論文データと特許データを研究者個人単位で接続して、アカデミアの研究者がもつ学術

分野別の論文数や技術分野別の特許数を求めた。また、特許の出願人と経済センサスの企業

情報を接続することで、特許の書誌情報と、企業の研究者数、従業員数や産業分類の情報な

どを併せて利用することが可能となった。 

このデータセットを用いて、アカデミアで生産された科学的知識が産業界でどの程度活

用されているのかを表す指標（科学集約度）を、企業の従業員 100 人当たりに活用された知

識ソースにまつわる学術論文数という単位で、知識フローの経路別（共同研究、アカデミア

特許の引用、その両方）に算出した。また、同時に、知識フローの径路別に、各学術分野の

論文のうちで産業界において活用された論文のシェアも算出した。我々は、データセットを

2000-2003 年（第 1 期）、2004-2007 年（第 2 期）、2008-2011 年（第 3 期）に分けて、同じ期

のなかで生じた知識フローを今回の集計対象としている1。 

3. 科学と産業のリンケージ指標 

図 2 には、科学集約度の第 1 期、第 2 期、第 3 期の推移を示した。第 1 期から第 2 期にか

けては、共同研究、アカデミア特許引用を経路とする指標のどちらも値が大きく上昇してい

る。これは大学法人化などで大学における特許出願が活発化したことが影響しているもの

と考えられる。しかしながら、第 2 期から第 3 期にかけては、科学集約度は全体で 3.6 から

3.0 に下落している。下落幅の約 2/3 はアカデミア特許引用の減少による。これは、第 2 期

において、特許出願するだけの価値があると考えられる大学等の研究成果が集中的に特許

化され、それに伴いアカデミア特許引用も一時的に大きく増加したが、第 3 期は大学におい

                                                        

1 NISTEP が購入した Scopus は 1996 年以降に刊行された論文情報を収録している。あま

り過去にさかのぼった論文情報を利用することができないため、同じ期における知識フローに

注目することとなった。 
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て特許化に向いた研究成果が短期的にはやや枯渇した可能性があると考えられる。共同研

究の減少はリーマンショック後の不況のために企業が研究開発投資を抑えたことが影響し

ている可能性があるだろう。 

  産業分野別の科学集約度（図 3）をみると、リーマンショックの影響もあり、情報通信機

器（ICT Machinery）などでは第 3 期に大きく低下している。しかし、科学知識の重要性上

昇のためか、化学分野のように第 1 期から第 3 期にかけて一貫して上昇している分野もあ

る。今後、産業分野ごとの変化の要因も探っていく必要があるだろう。 

図 4 には、アカデミアの学術論文のうちで共同研究やアカデミア特許引用を通して産業

界で活用された学術論文のシェアの推移を示している。全体としては第 1 期から第 2 期に

かけて大幅に上昇しており、やはり大学等の特許取得の影響で産業活用度が進んだといえ

るだろう。しかし、第 2 期から第 3 期にかけては 10％ほど低下している。これは上記の産

業分野別の科学集約度の傾向とも整合的といえるだろう。この時期は、アカデミアの論文数

はほぼ横這いであるが、特許出願数は低下している。第 2 期はそれまで大学に蓄積されてき

た研究成果の特許化が進んだが、第 3 期はこの件数が少なくなった（特に大学の単独出願）。

これは産業界が潜在的に引用可能なアカデミア特許数が減少したことを意味している。た

だし、アカデミアと企業の共同出願特許は減っていない。 

学術分野別にみると（図 5）、材料科学や化学工学などの分野では上昇傾向にある。コン

ピューター・サイエンス分野は、その学術成果のエレクトロニクス産業における活用が減少

したためか、産業活用度が低下している。産業分野別の科学集約度と比較すると、分野によ

る偏りは少ない。Social Science や Arts and Humanities などの、いわゆる文系に分類されてい

る学問分野も貢献度を高めている。  
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図 2 科学集約度の推移 

 

 

図 3 産業分野別の科学集約度 

 

 

  

1.5

2.4 2.3

0.2

0.3
0.2

0.5

0.8

0.5

2.1

3.6

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2000-2003 2004-2007 2008-2011

via Patent Citation

only (EACH period)

via Joint Invention &

Patent Citation

via Joint Invention

only

0

10

20

30

40

50

60

C
h
e
m

ic
al

s 
(e

x
c
l.

 P
h

ar
m

.)

P
h
a
rm

a
ce

u
ti

c
al

s

O
il

 a
n
d

 C
o
a
l 

P
ro

d
u

ct
s

IC
T

 M
a
ch

in
e
ry

E
le

ct
ro

n
ic

s 
M

ac
h
in

e
ry

P
ri

m
ar

y
 M

et
al

s

E
le

ct
ro

n
ic

s 
D

e
v
ic

es

C
la

y
 a

n
d

 S
to

n
e
s

T
ec

h
n

o
lo

g
y
 S

er
v

ic
e
s

G
en

e
ra

l 
M

a
ch

in
er

y

E
le

ct
ic

it
y
, 

G
a
s 

an
d
 U

ti
li

ti
es

T
el

ec
o
m

 S
e
rv

ic
e
,…

T
ra

n
sp

o
rt

a
ti

o
n
 M

a
ch

in
er

y

P
la

st
ic

, 
L

u
m

b
e
r 

an
d

 L
e
at

h
er

A
p
p
a
re

l 
an

d
 T

ex
ti

le

O
th

e
r 

M
a
n
u
fa

ct
u

ri
n
g

F
o
o

d
 a

n
d
 T

ab
a
cc

o
 P

ro
d

u
c
ts

P
u
lp

, 
P

a
p
e
r 

a
n
d
 P

ri
n

ti
n
g

IC
T

 S
e
rv

ic
es

M
e
ta

l 
P

ro
d

u
ct

s

R
et

a
il

 a
n

d
 W

h
o
le

sa
le

R
ea

l 
E

st
a
te

 a
n
d
 R

en
ta

l…

M
in

in
g
 a

n
d
 C

o
n
st

ru
c
ti

o
n

A
g
ri

cu
lt

u
re

, 
F

is
h
e
ry

 e
tc

.

W
o
o

d
 a

n
d

 F
u
n
it

u
re

O
th

e
r 

S
e
rv

ic
es

T
ra

n
sp

o
rt

a
ti

o
n
 a

n
d
…

P
e
rs

o
n
al

 S
e
rv

ic
es

F
in

an
c
ia

l 
S

e
rv

ic
es

2000-2003 2004-2008 2008-2011



v 

 

図 4 産業界で活用された学術論文のシェアの推移 

 

 

図 5 学術分野別：産業界で活用された学術論文のシェア 
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4. 結果と含意 

日本では 1990 年代後半から産学連携の促進を目指して、いわゆる TLO 法や日本版バイ

ドール法などの制度を整備したことにより、アカデミアと企業の共同研究が盛んになった。

また、2004 年には国立大学が法人化して大学が特許の出願人になることが可能になったた

め、国立大学からの特許出願が増加した。産業界における科学集約度の変化は、これらの制

度変更の影響を反映している。アカデミアから企業への知識フローの経路とそれぞれの規

模の変化を表していると考えらえる。 

2000 年代初頭と比較すると、総合的に見た科学集約度は多くの産業で上昇しつつある。

経済全体でサイエンス化が進みつつあり、企業のイノベーションに科学的知識を活用する

ことの重要性が増しているためと考えられる。 

学術分野としては、材料科学、化学、化学工学、計算機科学、物理学、工学などがサイエ

ンス化に大きな貢献をしているが、近年は数学をはじめ、幅広い学問分野の影響が強くなっ

ており、学術研究の産業への外部効果が高まっているといえるだろう。 

科学的知識が経済全体の産業イノベーションに大きく貢献するならば、高等教育機関や

公的研究機関などのアカデミアへの公的支出は支持されるべきだろう。また、アカデミアと

企業の直接的な相互交流はサイエンス・リンケージを高める重要な経路であるため、企業の

大学内研究施設や大学発ベンチャー企業の支援などを含めて、アカデミアと企業の協力関

係をさらに促進すべきだろう。 
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1. Introduction  

A scientific foundation has become increasingly integral to the industrial innovation 

process. For example, genome science has substantially changed the research and 

development (R&D) process of the pharmaceutical industry. Miniaturization of the large-

scale integrated circuit (LSI) fabrication process requires an understanding of the nano-

level physicality of its materials. Furthermore, advancements in information technology 

have a significant impact on society and the economy; in particular, “big data” analysis 

contributes to the scientific understanding of business and management activities. Since 

science sectors, such as universities and public research institutes (PRIs), are heavily 

subsidized by public money, there is a growing interest in measuring the scientific aspects 

of industrial innovation and performance to understand the economic impact of public 

R&D, despite severe constraints on public spending in general.  

Traditionally, the degree of scientific basis, or science intensity of industry has been 

measured using non-patent literature (research papers) citations made by patents (Narin 

and Noma, 1985; Schmoch, 1997). This indicator captures the extent to which patents 

(technology for industrial use) are based on the scientific content of research papers. It is 

observed that science linkage varies in the technology area; science intensity is 

particularly high in the biotechnology field (Looy et al., 2003). Alternatively, the science-

technology linkage can be captured using patent-publication pairs, i.e., overlapping 

content regarding the research output/invention between patents and research papers. This 

requires the simultaneous disclosure of research results in both patents and research 

papers (Lissoni et al., 2013), or text-mining techniques to identify the degree of content 

overlap between these two kinds of literature (Magerman et al., 2015). This information 

can provide an exact match between science and technology; however, limited availability 

of samples makes it unsuitable for aggregated indicators of science-technology linkage at 

the macro level.  

Both these indicators reflect only one aspect of science linkages, that is, non-patent 

literature (NPL) citations shows the degree of disembodied scientific knowledge that 

flows into patents, while the patent-publication pair indicates co-occurrence of scientific 

and invention activities within the same research. In this paper, we proposed new 

indicators, based on a novel dataset combining science, technology, and industry. More 

specifically, we linked the data of research papers (Scopus by Elsevier) and patent data 

(Institute of Intellectual Property (IIP) patent database) at the author/inventor level to see 

how academic discipline and technology are interlinked at the individual (academic) 
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researcher level. This dataset provides the linkage between science and technology 

embodied in human capital (academic inventors). Both industry citations to the patents 

invented by academic inventors and the joint patent inventions between firms and such 

academic inventors reflect new channels of scientific knowledge flow from academia to 

industry, compared to those measured by conventional indicators such as NPL citations 

in patents. Unlike past studies regarding paper-patent linkage at the researcher level for 

particular technologies, such as biotechnology (Murray, 2002) and nanotechnology 

(Meyer, 2006), this study covers all technological fields by constructing a large-scale 

database.  

Furthermore, the concordance between technology (patents) and industry 

classification has been created by linking patent database (IIP patent data) and Japanese 

economic census data at the firm level. Consequently, we developed concordance tables 

comprising academic field (science), patent (technology), and industrial performance 

(industry) to investigate how the scientification of industry and economy has progressed 

over time, while existing indicators, such as NPL citations in patents and the publication-

patent pair, only show linkages between science and technology. 

The remainder of this paper is structured as follows. Section 2 explains the 

methodology of linking three datasets - Scopus data for scientific publications, the IIP 

patent database for patents, and the economic census for industrial activities at the firm 

level. Section 3 presents the conceptual framework for analyzing the scientification of 

industry, and explains the methodology of our new indicators. Section 4 presents the trend 

of the scientification of industry over the last 10 years based on the new indicators. Finally, 

Section 5 presents a summary of new findings and some policy implications. 

2. Dataset Construction Methodology 

2-1. Author/Inventor level linkage of Scopus and the IIP Patent database 

In this subsection, the major task is disambiguation of academic inventors from the patent 

database. We use the IIP Patent database, which contains all patent application 

information from the Japan Patent Office (JPO) (Goto and Motohashi, 1997). In the patent 

database, the name and address of inventors are available. However, there is no 

information to identify whether the same inventor has multiple patents. The name of 

inventor is strong information, but we need to disambiguate the different persons with the 

same name.  
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We apply Li et al.’s (2014) methodology for disambiguation of inventors in USPTO 

(United States Patent and Trademark Office) patents. Their methodology is originally 

based on the Authority disambiguation approach developed by Torvik et al. (2005), and 

Torvik and Smalheiser (2009). We disambiguate all Japanese inventors of patents applied 

for between 1995 and 2013, derived from the IIP patent database. We exclude non-

Japanese inventors, whose names do not contain Chinese characters (Kanji), and/or 

whose address is outside Japan. A total of 12.4 million inventor-patent records are 

obtained for analysis, which contain 1.2 million unique combinations of the inventor’s 

name and address, and applicant’s name.  

The methodology consists of four steps. (1) Blocking: Inventor-patent records are 

divided into several subsets according to inventors’ names, and similarity is computed 

between pairs of records within each block. (2) Training sets: We construct matched and 

unmatched training sets for pairs of matched and unmatched inventors’ full names defined 

as “rare.” Using a telephone directory, for the period 2000-2012, we define a list of “rare” 

names that appear only once or do not appear at all in the telephone directory. (3) Ratio: 

We define a “similarity profile (vector),” 𝐱 = (𝑥1 ⋯ 𝑥𝑛), which represents the degree 

of similarity in inventor and patent attributes between two inventor-patent records, for all 

inventor-patent record pairs within blocks. For inventor attributes, inventor’s name and 

address are used. For patent attributes, applicant’s name and ID, the main technology 

class at the four-digit level of the International Patent Classification (IPC), and the list of 

co-inventors’ names are used. Applicant names and IDs are both normalized using the 

National Institute of Science and Technology Policy (NISTEP) Dictionary of Corporate 

Names, and the NISTEP Dictionary of Names of Universities and Public Organizations, 

both developed by the National Institute of Science and Technology Policy and publicly 

available from its website2. The inventor address attribute is also normalized and divided 

into prefecture (to-do-hu-ken), city (shi-ku-cho-son), district (chi-mei), and street (ban-

chi and go) using a commercial geocoding software provided by Kokusai Kogyo Co., 

Ltd., Address-normalizing converter and geocoding tool. We then calculate the likelihood 

“ratio” for each similarity profile from the training set as the ratio of times that a similarity 

profile appeared in the match set compared to the non-match set. (4) Pairwise matches: 

the (posterior) probability of a match between inventor-patent records based on Bayes 

theorem using the similarity profile and corresponding likelihood ratios. Following Li et 

al. (2014), we set the prior probability as the inverse of the number of pairs in the block. 

                                                        

2 http://www.nistep.go.jp 
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The minimum threshold for the probability matching pair is set to 0.5. Further detailed 

explanation regarding the data and method used for patent-inventor disambiguation are 

described in Appendix 1. 

Table 1 presents the results of inventor disambiguation and its estimation accuracy. 

We identified 1.71 million inventors from 12.4 million inventor-patent records, which 

means that the average number of patents per inventor is 7.1. Next, we check the precision 

of our inventor disambiguation results with the KAKEN Database of Grants-in-Aid for 

Scientific Research developed by the National Institute of Informatics. In the KAKEN 

database, all receivers of public research funds from the Japan Society for the Promotion 

of Science (JSPS) are registered and a reliable identifier for each researcher is available. 

For the twelve thousand inventor-patent instances of six thousand inventors extracted 

from the KAKEN database, we calculate the splitting and lumping error of our 

disambiguation results following Li et al. (2014). The results show that a splitting error 

of 2.41% and lumping error of 0.29%. These values indicate that our results are better 

than Li et al.’s (2014) which has a splitting error of 3.26% and lumping error of 2.34%. 

 

(Table 1) 

 

From the inventor disambiguation results, we extract 62,983 inventors as academia.3 

Next, we match these academic inventors with the authors of scientific papers. From the 

list of scientific papers, derived from the Elsevier Scopus database, we use the papers 

written by authors whose country of affiliation is Japan. Although the inventor/author’s 

name and the affiliation are matched, both inventor and applicant names are recorded in 

Japanese in the IIP patent database but are recorded in English in the Scopus database. 

The IIP patent database, however, can be easily mapped with the PATSTAT Database 

(Worldwide Patent Statistical Database) of the European Patent Office (EPO). Hence, we 

replace the original inventor name recorded in Japanese with the information of its 

corresponding record in the PATSTAT. For affiliation information, we use the NISTEP 

Dictionary of Names of Universities and Public Organizations, and its converter for the 

                                                        

3 The affiliates of inventors are identified by their address information. For example, if an inventor has the 

same address as the applicant address for the same patent, the inventor is supposedly working for the 

applicant’s organization. If this is not the case, inventors in a single applicant patent are assigned to the 

applicant organization. Finally, we conduct text mining for the inventor’s address to identify his/her 

affiliation (or individual) with other inventors. Here, academic inventors include those working for 

universities and public research organizations.  
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Scopus database. Among the more than 9.7 million author-affiliation-paper instances in 

the Scopus database, we could successfully map the affiliation identifier, developed by 

NISTEP, for 5.3 million Japanese instances. As a result, 30,432 inventors (48.3%) among 

the 62,983 academic inventors are successfully matched with the authors in the Scopus 

database based on inventor/author name and applicant/affiliation identifier. However, 

since the Scopus author ID and the disambiguated inventors do not completely match 

each other, we combine the inventor/author IDs iteratively until they are uniquely 

matched. Finally, almost 2,000 inventor IDs are integrated with each other and we obtain 

28,433 matched inventors/authors. 

Figure 1 illustrates the number of inventors and academic authors in Japan during 

the period from 2008 to 2011 based on the matching results. 563 thousand inventors and 

382 thousand authors who published a paper in an academic journal were included in the 

Scopus database. Among the patent inventors, 30.5 thousand inventors are affiliated to 

academic institutions and 15.6 thousand inventors published at least one paper in Scopus 

journals.4 In other words, there are 14.9 thousand inventors without any publications in 

the Scopus database. It is unusual that academic researchers have patents, but no 

published papers, so we suspect that a substantial number of them have scientific 

publications, not listed in Scopus, such as research papers in the Japanese language.  

 

(Figure 1) 

 

Table 2 shows the time trend of the information presented in Figure 1. The proportion 

of academia among inventors increased from 3.2% in the period 2000-2003 to 5.4% in 

the period 2008-2011. The proportion of academic authors with patent inventions also 

                                                        

4 We could match 37,718 authors in the Scopus database with 30,732 patent inventors. We found a splitting 

error in the matching results. Several authors are matched to a same inventor or one author is matched 

with several inventors. Therefore, we merge the authors’ identification numbers and the disambiguated 

inventors until such splitting errors disappeared. As the result, we finally identify 28,443 unique 

authors/inventors. Assuming the splitting error, we correct the number of authors identified by Author IDs 

in Scopus and the number of inventors identified by our disambiguation procedure. The correction rate 

for the number of authors is 0.754 (= 28,443/37,718), and for the number of inventors is 0.926 (= 

28,443/30,732). According to the author identification numbers from Scopus, the number of authors 

active in the periods 2000 to 2003, 2004 to 2007 and 2008 to 2011 with Japanese affiliations in the Scopus 

database are 419,086, 472,004, and 506,116, respectively. Multiplying the correction rate 0.754 with those 

numbers, the corrected numbers of unique authors is 316,031, 355,936, and 381,660, respectively. 

Similarly, the number of active inventors in the periods 2000 to 2003, 2004 to 2007, and 2008 to 2011 is 

721,054, 667,474, and 602,180, respectively. Multiplying the correction rate 0.926 with those numbers, 

the corrected numbers are 667,348, 617,759, and 557,328, respectively.  
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increased from 3.0% in 2000-2003 to 4.1% in 2008-2011. Furthermore, the proportion of 

academic authors to total inventors doubled from 1.4% to 2.8% during the 12-year period. 

 

(Table 2) 

 

2-2. Firm level linkage of the IIP patent database and Economic Census 

We aim to link patent information from the IIP Patent Database with establishment census 

data at the firm level. To this end, we develop a methodology that makes a one-to-one 

link between patent applicants and organizations in the census data based on 

establishments’ names and addresses. Firm level linkage is then identified as the linkage 

to any type of organization defined in the census except for incorporated administrative 

agencies, unincorporated associations, and other miscellaneous incorporated entities. As 

in Section 2-1, we focus on non-individual patent applications in which both applicant 

and inventor addresses are in Japan. The number of the applications from 1964 to 2013 is 

10,253,009, and the total number of applicants during this period is 11,038,633. As for 

the establishment census, the following five datasets are used: the Establishment and 

Enterprise Census published in 2001, 2004, and 2006, and the Economic Census of Japan 

published in 2009 and 2012. We link the application data with each of these census 

datasets. This approach allows us to find the linkage with an applicant organization that 

existed when either one of the census surveys was conducted. Table 3 shows the total 

number of establishments in each census dataset and the breakdown by establishment 

type defined as follows: (1) the head office of a firm with multiple establishments 

(Headquarter) (2) a branch of a firm with multiple establishments (Branch), and (3) a 

single unit establishment (Single Est.).  

 

(Table 3) 

 

Since we focus on patent applications by non-individual Japanese applicants, patents 

are applied from any one of these establishments in Japan. Considering that patent 

applications are usually managed by an entire organization rather than an individual 

establishment, we link applicants to the establishments that are the headquarters. To do 

this, we use a unique organization identifier assigned to all establishments the 
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organization owns. Thus, our methodology links applicant information with the 

headquarter of a multi-establishment firm, or a single-establishment firm.  

In implementing the linking methodology outlined above, we employ name and 

address information that are available in both the applicant records of IIP patent database 

and the establishment records of a census. Several issues arise when using these pieces of 

information. First, the names and addresses of applicants may contain spelling errors, and 

their format may differ between the applicant and establishment records. To solve for the 

issue of the same entities being deemed as different due to these notational variations 

(false negative problem), we develop a series of text processing programs to convert the 

raw name/address data to its standardized representation. Second, both applicant and 

establishment addresses undergo changes due to the consolidation of local administrative 

units such as municipalities. To cope with address changes of this kind, we use the 

commercial software from Kokusai Kogyo to convert the original addresses to the latest 

address format (as of 2014). Lastly, while an applicant address is written in a single line, 

an establishment address in a census is recorded as a collection of five geographical 

components (prefecture, city or wards, district, street, and any others that follow such as 

a building name or a room number). To make these different address formats comparable, 

we develop a text-scanning program to break the single line of an applicant address into 

these five parts. We then define a list of prefectural names, city (ward) names, district 

names, and street names to be the standardized representation of address against which 

the applicant and establishment addresses are compared. The methodology uses these 

standardized names and addresses to establish a one-to-one link from an applicant to an 

establishment in operation as of the application date. The implementation consists of the 

following three steps. 

For each patent application, the first step begins by identifying from each census 

dataset a sample of organizations and their establishments that are in operation as of the 

patent application date. This requires detailed information about the opening and closing 

dates of an establishment under the ownership of the organization, which is not available 

to us. Instead, we observe the first and last census survey years during which the 

establishment is recorded. Given that that these dates are censored, we define an active 

period of an establishment as a period spanning from the census year preceding the one 

in which it is first recorded, to the census year succeeding the one in which it is last 

recorded5. In each survey, we sample organizations that have at least one establishment 

                                                        

5 Establishments in the 2001 census are assumed as active from the beginning of the application period 
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whose active period includes the patent application date. In the second step, 

establishments whose names exactly match with, or include, the applicant name are 

collected to form a set of “candidate” establishments. In the third step, the address of each 

candidate establishment is matched with the applicant’s address by their components 

(prefecture, city or ward, district, and street). The extent of overlaps between the four 

components yields the (geographical) “match level” for each establishment, which 

indicates geographical accuracy between the addresses of the establishment and the 

applicant. The procedure links the applicant to the establishment having the finest match 

level. Next, we look at the organizational identifier of the establishment, and relink it to 

the headquarter establishment having the same organizational identifier, if it is a branch. 

The procedure is completed by linking the applicant with an organization that owns the 

establishment.  

For each patent applicant, we apply this procedure to five census datasets, and obtain 

five match levels. The applicant is successfully matched with an organization if a single 

headquarter establishment of the organization is linked in the second step. Otherwise, the 

procedure fails to create a match. These failures can occur in the following three cases. 

(1) In the first step, the candidate establishment set is empty. (2) In the second step, the 

largest geographical part of the establishment addresses (prefecture) does not match that 

of the applicant address. (3) In the third step, multiple organizations have been found at 

the finest match level and thus a single result cannot be identified. 

The results from the linking procedure for patent applications between 1964 and 

2013 are shown in Table 4. The detailed results for all organizations, including the 

breakdown by the match levels, are given in Table A2 in Appendix 2. In any census 

dataset, the linking procedure finds that about 1.4 % of all organizations and 1.5 % of all 

firms applied for patents. The rate of applicants uniquely linked to organizations in the 

census data (“Matching Rate”) is highest for the 2001 census data, and decreases for 

subsequent census datasets. Since we use only establishments that are in operation around 

a patent application date, the decreasing pattern may reflect that the procedure tends to 

fail for applications distant from the census survey year.  

 

(Table 4) 

                                                        

(1964), and those in the 2012 census are assumed as active until the end of the application period (2013). 
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To observe this in detail, we analyze the matching rates by application year. Figure 

2 shows the results for all organizations. As seen in Figure 2 (a), yearly matching rates 

exhibit decreasing patterns with their peaks situated around the survey years. Therefore, 

our linking procedure works well for patent applications around the census year. 

 

(Figure 2a and 2b) 

 

Viewing the results of the whole application period, shown in Figure 2 (b), the 

matching rates are observed to be low overall for old patent applications, except for the 

2001 census data. We also confirm that the procedure using the later years’ census yields 

lower matching rates for older patent applications. Regarding the 2001 census, it is noted 

that all establishments in the census are assumed to be active from 1964 in the first step 

of the procedure (see footnote 2). Therefore, the result may contain over-matched 

applicant-establishment links6. 

Lastly, we assess the quality of the linking procedure. As shown in Figure 2, the 

matching rates are high for patents applied around the census years, and low for patent 

applications away from the census years. Therefore, matching rates may not be a 

consistent indicator of the quality of the linking procedure. Instead, we look at patent 

applications and applicants that failed to establish a link among all census datasets. These 

applicants include organizations that applied for patents and did not exist before 2001, 

those that existed only between the census years, or those mistakenly judged as failures 

by implementation errors. Table 5 shows these failure cases for the whole application 

period. While a considerable number of patent applicants (86,119) have not been found 

in the census data, their applications account for about 12% of the total patent applications. 

Therefore, it can be concluded that a majority of patent applications are successfully 

linked to organizations included in either one of the census datasets. 

 

(Table 5) 

 

                                                        

6 Yearly matching rates for firms exhibit similar decreasing patterns (See Figure A2 in Appendix 2). 
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3. New Indicators of Science and Industry Linkage 

3-1. Framework of indicators 

Figure 3 illustrates the relationship between the dataset and the indicators. In the previous 

section, the methodology of two kinds of data linkages are presented, i.e., academic 

researcher level linkage between Scopus research papers and the IIP patent database 

patent applications (subsection 2.1), and firm level linkage between patent applicants (IIP 

patent database) and economic census data (subsection 2.2). NPL citations of patents, a 

typical method used to measure science linkage in the existing literature, is based on a 

firm’s patent citations of scientific publications in the academic sector.7 In this paper, we 

propose new indicators for science-industry linkage, using the interactions between the 

industry and the academia in patenting activities, i.e., joint inventive activities (captured 

by joint patent inventions) and firms’ patent citations to academic patents. Such 

interaction information regarding the patenting activities of both sectors, together with 

the datasets created in the previous section, allow us to link the scientific activities of the 

academic sector (number of papers by academic field) to industrial activities of the firm 

sector (number of employment).  

 

(Figure 3) 

 

Our new indicators can capture the mechanism of involving scientific knowledge in 

industrial innovation via patenting. Universities and PRIs, heavily funded by public R&D, 

are principally research organizations providing scientific publications as an output of 

their research. However, there is a growing global trend of patent applications from these 

institutes (OECD, 2013). In Japan, national universities, which used to be government 

organizations, became independent agencies in 2014. This institutional reform allows 

them to claim patent rights, and university patent applications have increased significantly 

(Motohashi and Muramatsu, 2012). Therefore, a patent-based science linkage indicator 

has become increasingly important. Additionally, due to the nature of the patent system, 

                                                        

7  Additionally, there are some scientific papers, published by industry researchers (outside the higher 

education institutes (HEIs) and PRIs sectors), but its contribution to total publications is relatively small. 

In 2010, the number of papers involving industry researchers in Scopus is only about 12,000 (4,500 papers 

by solely industry researchers and 7,400 papers of joint publication of academia and industry), out of 

95,000 total papers.  
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patent citation information is more reliable than NPL citations. NPL includes not only 

scientific papers, but also non-scientific materials such as technical documents, while 

patent information reflects a uniform set of technological contents, based on formal 

institutions under the patent law. Therefore, our new indicator will provide reliable 

information on science linkage indicators compared to NPL, although it cannot 

completely substitute NPL due to the differences in their concepts. 

3-2. Implementation 

As mentioned above, we propose new indicators for science-industry linkage, based on 

the information on firms’ joint patent inventions with academia, and on firms’ patent 

citations to academic patents. These two channels of linkage between science and industry 

are not measured by the existing indicator, NPL citations of industry patents. Similar to 

the indicators based on NPL citations, our indicators are also measured by the number of 

scientific publications utilized by firms, i.e., the number of publications by academic 

inventors with whom the firm jointly developed a patent and/or whose patent the firm 

cites in its patent.  

We divided the whole observation period (2000-2011) into three sub-periods, 2000-

2003, 2004-2007, and 2008-2011. Next, we assume that all patents invented by an 

academic researcher within a particular sub-period are related to scientific papers 

published within the same period. This approach is different from previous studies that 

find equivalent patents and papers by analyzing their contents in detail (Lissoni et. al, 

2012; Magerman et al., 2015). Our goal is to develop indicators of science intensity for 

all industries, based on large-scale datasets, so that the effort of analyzing the contents of 

patents and papers individually is not feasible. Additionally, since the scientific 

exploration of academics has broad scope, it would be reasonable to assume that the 

contents of patents and papers by the same researcher are related to some degree.  

Next, the linkage between academic researchers and firms is measured based on 

academic patents, either jointly applied with a firm or cited by a firm’s patent within the 

same sub-period. We do not consider citations beyond the sub-period to ensure the same 

citation window across sub-periods.8  Therefore, it should be noted that our indicator 

reflects only the recent interactions between science and industry, while NPL indicators 

consider all citations of scientific papers.  

                                                        

8 We could use a longer citation window, but the data is limited, since SCOPUS information is available 

only from 1995, and is not reliable before 2000. 



12 

 

Suppose that 𝑖 is an industry; 𝑠 is a science field; 𝑡 is a technology class; 𝑓 ∈

𝐹𝑖(𝑑) is a firm active in an industry 𝑖 in period 𝑑; 𝑗 ∈ 𝑉𝑓(𝑑) is an industrial inventor 

affiliated to firm 𝑓  in period 𝑑 ; 𝑟  is an academic researcher active in period 𝑑 ; 

𝑝𝑗,𝑟
Joint(𝑑) is the number of patents jointly invented by inventor 𝑗 and researcher 𝑟 in 

period 𝑑; 𝑝𝑗,𝑟
Cite(𝑑) is the number of patents invented by the academic researcher 𝑟 in 

period 𝑑  cited in patents invented by inventor  𝑗  in period 𝑑 ; and 𝑛𝑟,𝑠(𝑑)  is the 

number of academic publications of researcher 𝑟 in a science field 𝑠 in period 𝑑.  

First, we define the amount of new scientific knowledge (SK) utilized by inventors 

in firms through joint inventions with academia (Joint) and/or academic patent citations 

(Cite). Using our dataset, linking patent inventors and authors of scientific publications 

makes it possible to identify scientific publications of academic patent inventors. We 

measure SK utilized by inventors in firms based on the number of academic publications 

(𝑛) made by their joint inventors or inventors of patents they cite. Specifically, we define 

the amount of new SK in the science field 𝑠 created by academic researchers utilized by 

industrial inventor 𝑗 via (1) only joint inventions with academic inventors (SK𝑗,𝑠
JointOnly

); 

(2) only patent citation to patents developed by academic inventors (SK𝑗,𝑠
CiteOnly

); and (3) 

both joint invention and patent citation (SK𝑗,𝑠
JointCite

) as: 

SK𝑗,𝑠
JointOnly(𝑑) =∑I[𝑝𝑗,𝑟

Joint(𝑑) > 0]×I[𝑝𝑗,𝑟
Cite(𝑑) = 0]×𝑛𝑟,𝑠(𝑑)

𝑟∈𝑅

 

SK𝑗,𝑠
CiteOnly(𝑑) =∑I[𝑝𝑗,𝑟

Joint(𝑑) = 0]×I[𝑝𝑗,𝑟
Cite(𝑑) > 0]×𝑛𝑟,𝑠(𝑑)

𝑟∈𝑅

 

SK𝑗,𝑠
JointCite(𝑑) =∑I[𝑝𝑗,𝑟

Joint(𝑑) > 0]×I[𝑝𝑗,𝑟
Cite(𝑑) > 0]×𝑛𝑟,𝑠(𝑑)

𝑟∈𝑅

 

where: 

 𝑅 : Set of all academic inventors (including academic inventors unmatched with 

authors in Scopus). 

 𝑛𝑟,𝑠 (d): Number of academic publications of researchers 𝑟  in science field s  in 

period 𝑑. 

 𝑝𝑗,𝑟
Joint(𝑑) : Number of patents jointly invented by inventor 𝑗  and researcher 𝑟  in 
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period 𝑑. 

 𝑝𝑗,𝑟
Cite(𝑑) : Number of patents invented by academic inventor 𝑟  in period 𝑑  and 

cited by patents invented by industrial inventor 𝑗 in period 𝑑. 

 

Since we could not match all academic inventors to authors in the Scopus database, 

the number of academic publications by unmatched academic inventors is unknown. 

Therefore, we impute 𝑛𝑟,𝑠(𝑑) for academic inventors unmatched with Scopus based on 

the relationship between patents and publications of academic inventors matched with 

Scopus database. Denoting 𝑅𝑀  and 𝑅𝑈  as the set of researchers matched and 

unmatched with the Scopus database respectively, we estimate the number of academic 

publications by unmatched researcher 𝑟′ ∈ 𝑅𝑈 in science field 𝑠 published in period 𝑑, 

by, 

�̂�𝑟′,𝑠(𝑑) =∑𝑝𝑟′,𝑡
All (𝑑)×�̅�𝑡,𝑠(𝑑)

𝑡∈𝑇

, 𝑟′ ∈ 𝑅𝑈 

where 𝑝𝑟′,𝑡
All (𝑑) is the number of patents invented by academic researcher 𝑟′ in period 

𝑡 and �̅�𝑡,𝑠(𝑑) represents the average number of academic publications in science field 

𝑠 published in period 𝑑 per patent of technology class 𝑡 invented in period 𝑑 which 

is defined by: 

�̅�𝑡,𝑠(𝑑) =

∑ 𝑛𝑟,𝑠(𝑑)×
𝑝𝑟,𝑡
All(𝑑)

𝑝𝑟
All(𝑑)𝑟∈𝑅𝑀

∑ 𝑝𝑟,𝑡
All(𝑑)𝑟∈𝑅𝑀

 

Tables 6a to 6c show the estimated value of �̅�𝑡,𝑠(𝑑). 

 

(Table 6a, 6b and 6c) 

 

Next, we define the industry-level scientific intensity as the total SK in science field 

𝑠 utilized by industrial inventors affiliated to firms in industry 𝑖 divided by the number 

of inventors (𝐼𝑁𝑉𝑖(𝑑)) or the number of employees (𝐸𝑀𝑃𝑖(𝑑)) in the industry: 

SIINV𝑖
𝑋(𝑑) =

∑ ∑ [SK𝑗,𝑠
𝑋 (𝑑)]𝑗∈𝑉𝑓(𝑑)𝑓∈𝐹𝑖(𝑑)

𝐼𝑁𝑉𝑖(𝑑)
 for 𝑋 = JointOnly, JointCite, CiteOnly. 
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SIEMP𝑖
𝑋(𝑑) =

∑ ∑ [SK𝑗,𝑠
𝑋 (𝑑)]𝑗∈𝑉𝑓(𝑑)𝑓∈𝐹𝑖(𝑑)

𝐸𝑀𝑃𝑖(𝑑)
= SIINV𝑖

𝑋(𝑑)×
𝐼𝑁𝑉𝑖(𝑑)

𝐸𝑀𝑃𝑖(𝑑)
 

for 𝑋 = JointOnly, JointCite, CiteOnly. 

where 𝐼𝑁𝑉𝑖(𝑑)  is the number of inventors affiliated to firms in industry  𝑖  and 

𝐸𝑀𝑃𝑖(𝑑) is the total number of employees affiliated to firms in industry 𝑖.  

Finally, we define an indicator from the viewpoint of science as the amount of 

utilized scientific knowledge (USK) in science field 𝑠  of academic researcher 𝑟  by 

industrial inventors via only joint invention with industrial inventors, via only citations 

by industrial patents, and via both joint inventions and citations as: 

USK𝑟,𝑠
JointOnly(𝑑) = I[𝑝𝑟

Joint(𝑑) > 0]×I[𝑝𝑟
Cite(𝑑) = 0]×𝑛𝑟,𝑠(𝑑), 

USK𝑟,𝑠
CiteOnly(𝑑) = I[𝑝𝑟

Joint(𝑑) = 0]×I[𝑝𝑟
Cite(𝑑) > 0]×𝑛𝑟,𝑠(𝑑), and 

USK𝑟,𝑠
JointCite(𝑑) = I[𝑝𝑟

Joint(𝑑) > 0]×I[𝑝𝑟
Cite(𝑑) > 0]×𝑛𝑟,𝑠(𝑑). 

where 𝑝𝑟
Joint(𝑑) is the number of patents jointly invented by academic researcher 𝑟 and 

industrial inventors, and 𝑝𝑟
Cite(𝑑)  is the number of patents invented by academic 

researcher 𝑟 cited by industrial inventors. Using the USK, we define the utilization rate 

of science knowledge (URSK) in field 𝑠 as: 

URSK𝑠
𝑋(𝑑) =

∑ USK𝑟,𝑠
𝑋 (𝑑)𝑟∈𝑅

𝑁𝑠(𝑑)
 for 𝑋 = JointOnly, JointCite, CiteOnly. 

where 𝑁𝑠(𝑑) is the number of total scientific publications (including the publications of 

non-inventor pure scientists). Thus, this indicator measures the share of the number of 

academic inventors’ science publications linked to industrial inventors through patenting 

activities in all academic publications. 

4. Results 

4-1. Empirical findings 

Figure 4 shows the aggregated trend of academic involvement in industry innovation. It 

shows that both the shares of academia-industry joint applications and patents citing 

academic patents increased from 2000-2003 (Time I) to 2004-2007 (Time II). In 

subsequent periods (from Time II to Time III, 2008-2011), the share of joint applications 
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increased further, while the share of patents citing academic patents decreased. 

Additionally, the number of inventors per employee (reflecting R&D intensity) decreased 

over time in the industry sector.  

 

(Figure 4) 

 

Figures 5-7 present the aggregated indicators described in the previous section. 

Specifically, Figure 5 and 6 shows the investor-based science intensity (SIINV) and 

employee-based science intensity (SIEMP) respectively, and Figure 7 shows the industry 

breakdown of SIEMP as indicators of science intensity in industry.  

The SIINV increased from Time I to Time II, by increasing both joint inventions and 

academic patent citations. After the incorporation of Japan’s national universities in 2004, 

academic patent applications increased substantially. Moreover, industry-university 

collaboration activities have been promoted for over 10 years, which has contributed to 

the increase in science intensity indicators after 2004. However, the total intensity did not 

change at 249 from Time II to Time III. Looking at the indicators, science intensity due 

to academic patent citations decreases, while that due to joint inventions increased. It 

should be noted that the citation indicator is calculated by taking into account only cited 

(academic) patents applied within the same period. Therefore, a decrease in this indicator 

means that the academic patents in Time III are less likely to be cited by industry, as 

compared to those in Time II.9 

 

(Figure 5) 

 

The SIEMP (science intensity by total employment) decreased from Time II to Time 

III. The difference in the rate of decline between SIEMP (20%, from 3.6 to 3.0) and SIINV 

(0% unchanged from 249) is due to the decreasing ratio of number of inventors to total 

employment. During Time III, firms cut their R&D spending, responding to the economic 

downturn after the financial crisis in 2008, which is the reason decreased inventive 

                                                        

9 It is possible to consider the information for cited academic patents in previous periods as well, instead 

of just using the ones cited in the same period as the academic patents. However, our datasets start from 

1995, so data truncation prevents us from make a fair inter-temporal comparison if we used all cited 

academic patents. 
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activities.  

 

(Figure 6) 

 

Figure 7 shows the industry breakdown of SIEMP. It is found that the chemical 

(excluding pharmaceuticals) and pharmaceutical industries substantially lead other 

industries. However, the science intensity indicator has generally increased in other 

industries, which means that scientification of industrial innovation can be observed 

across industries. A sharp drop of SIEMP in the ICT machinery industry from Time II to 

Time III is consistent with the macro economic shock in 2008, since R&D cost cuts are 

particularly observed for firms in this industry. In contrast, some industries, such as 

chemicals (excluding pharmaceutical), telecom services, and broadcasting, show a 

consistent increase in SIEMP for all periods. In general, the cross industry distribution of 

science intensity becomes equal, since the Gini coefficients decrease from 0.612 in Time 

I to 0.586 in Time III. 

 

(Figure 7) 

 

Regarding the sources of SK, Figure 8 shows the aggregated trend of URSK, the 

utilization rate of academic papers to total publications. A similar trend is observed in the 

SIINV and SIEMP, which increased from Time I to Time II and decreased from Time II 

to Time III. The changes in URSK are caused not only by the demand side factor of SK 

in industry (expressed by SIINV and SIEMP), but also by the supply side factor of 

scientific activities. The up and down trend of URSK is similar to that of SIINV and 

SIEMP, but it should be noted that any changes in supply side factor such as new scientific 

advancements may affect the trend. 

 

(Figure 8) 

 

Viewing this trend from an academic perspective, the situation is more complicated. 

In general, the industry utilization rate increased over time, while a sharp decline from 

Time II to Time III is found in some fields, such as chemistry, physics, and astronomy. In 
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contrast, some academic fields, such as mathematics and social science, show a strong 

increasing trend. Thus, the overall inequality in URSK in the academic field decreases 

from Time I to Time III, as is indicated by the Gini coefficient decreasing from 0.35 to 

0.30. 

 

(Figure 9) 

 

4-2. Comparison with the NPL indicator 

To evaluate our new indicators, we compared them to the NPL citation indicator. Since 

Japanese patent databases do not provide applicant citation information (only examiner 

citation data), the JPO patents within the DOCDB (master documentation database of the 

EPO) patent family with USPTO patents are extracted first. Next, based on the NPL 

citation information of these USPTO patents, a dummy variable is created to indicate 

whether an equivalent US patent has NPL citations 10 . Finally, we compare this 

information with that of our indicators of science linkage, i.e., either the joint patents 

applications with academia, or patents citing academic patents. Figure 10 shows the 

comparison of these two indicators by technology class for a whole period, indicating the 

share of both joint patent applications with academia or patents citing academic patents 

(referred to as academic-related patents hereafter) and patents citing NPL (Both), only 

NPL citations (only NPL), and only academic-related patents (only A-Pat). 

 

(Figure 10) 

 

First, it is found that the number of academic-related patents correlated positively 

with that of patents with NPL citations. However, the share of NPL citation patents is 

larger than that of academic-related patents in general, as seen by the larger values for 

only NPL, when compared to only A-Pat. It is found that about half of the NPL documents 

cited by patents are not related to academic research, such as books, industry related 

documents and patent related documents (like patent abstracts) (Callaert et. al, 2006). In 

                                                        

10  The NPL citations of US patents include not only scientific papers but also many patent abstract 

documents. We roughly identified the patent abstracts and excluded it in advance. 
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contrast, our indicators are constructed by using scientific papers in Scopus only, which 

partly explains this difference.11  

Additionally, there is a conceptual difference between the NPL citations and 

academic-related patents. Our new indicator reflects the interaction between industry and 

academia using academic patents, while NPL citation reflect industry’s direct access to 

academic research. It is interesting that the share of only A-Pat is relatively small for very 

high science intensity industries, such as biotechnology (4.4% out of 94.3% in total) and 

pharmaceuticals (2.5% out of 83.6%). In contrast, there are some industries, where the 

shares of only A-Pat are relatively large, such as materials and metallurgy (8.6% out of 

44.8%), chemical engineering (9.9% out of 40.4%), and macromolecular chemistry and 

polymers (8.2% out of 39.3%). In these industries that heavily rely on them, the use of 

SK by industry is mediated more by academic patenting, rather than directly citing 

scientific papers, which explains the differences in the way science interacts with industry 

in different fields. 

5. Discussion and Conclusion 

This paper presents new indicators to measure scientification of industry in Japan, by 

linking a scientific paper database (science), patent information (technology), and 

economic census data (industry). The new indicators reflect a new mechanism of science 

linkage between science and industrial activities, which cannot be measured by NPL 

citations of patents, capturing the pure disembodied knowledge flow. In other words, the 

linkage of scientific publications and patents at the researcher level allows us view 

science-industry linkages via academic involvement in patenting activities, instead of just 

publishing scientific findings in papers. 

These new indicators of science linkage in Japan show an increasing trend over the 

past 10 years. However, the science intensity of industry decreased from 2004-2007 to 

2008-2011 due to a decrease in the R&D intensity of industry, caused by the economic 

slowdown after the financial crisis in 2008. However, co-invention activities increased 

                                                        

11  Additionally, Figure A4 in Appendix 4 shows difference between the NPL citations matched and 

unmatched to Scopus. In the technology fields with high science intensity, such as biotechnology and 

pharmaceuticals, most scientific papers cited as NPL by the patents are matched to Scopus, indicating 

that firms in these industries tend to directly access to scientific knowledge published as academic papers 

with relatively high quality for their R&D. On the other hand, while patents in the fields, such as digital 

communication and IT methods for management, cite number of NPL documents, only a small share of 

the NPL is matched to Scopus, implying that documents other than academic papers are utilized for the 

R&D of the firms in those fields. 
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during this period, so that the importance of science in industrial innovation kept 

increasing over time. One reason behind these trends is the institutional reform of the 

academic sector in Japan, i.e., incorporation of national universities in 2004. Additionally, 

the Japanese Government introduced various polices stimulating university-industry 

collaborations from the late 1990s onwards, such as the TLO (Technology Licensing 

Organization) Promotion Law and the Japanese Baye Dole Act (Motohashi and 

Muramatsu, 2012). These policy actions induced academic sectors (both HEIs and PRIs) 

to work with industry, which involved patenting activities. 

Government policies are not the only factors behind the trend of science linkage with 

industry; the growing importance of scientific inputs in industrial innovation has an 

impact as well. The 21st century began with the completion of the analysis of the human 

genome sequence. Big-data analysis allows scientific understanding of business and 

economics activities, such as purchasing behavior and production process in factories. In 

our analysis, science linkage with industry is found not only in science-based industries, 

such as pharmaceuticals and electronics, but also in many other industries. The variation 

of the total science intensity index of industry decreased in the past decade. Studies on 

the taxonomy of innovation suggest sectoral differences in its characteristics, and science-

based industry is one of these categories (Pavitt, 1984; Breschi and Malerba, 1997). 

However, our study has shown that scientific knowledge become general inputs in almost 

all industries, and this trend can be referred to as the “science-based economy,” for non-

science based industries as well.  

Hence, public expenditure on science sectors should be supported, since scientific 

findings contribute to industrial innovation, and benefit the entire economy, instead of 

only a limited number of science-based industries. Moreover, further interactions between 

academia and industry should be promoted, since direct interactions between them is a 

more important source of science linkage than the disembodied knowledge flow from 

science to industry, captured by NPL citations. Academic-industry interactions can be 

encouraged by developing corporate research centers inside universities and university-

based startups.   
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Appendix 1. Disambiguation of Japanese Patent Inventors 

In this appendix, we describe the method and data to be used to identify (disambiguate) 

the inventors of patents filed in the JPO.  

We utilize the data for patents applied in 1995 or later from the IIP patent database 

2015 version (IIP-PD hereafter)12. The IIP-PD consists of a number of normalized tables 

and we use tables for inventors, applications, and applicants, named as “inventor”, “ap” 

and “applicant” respectively. Since the names of the non-Japanese inventors are written 

in Katakana characters (a Japanese syllabary), they contain many spelling 

inconsistencies; hence, we use only the Japanese inventors for this analysis. To extract 

only the Japanese inventors’ data, we exclude inventors whose name does not contain a 

Chinese character. The unit of the inventor table records is patent-inventor; and the table 

contains 25,499,350 total records but we extract only 12,397,820 records. 

To apply the disambiguation algorithm, we normalize the names and addresses of 

inventors and applicants. For inventor names, all spaces, including spaces between 

surnames and given names of inventors, are removed and similar characters are 

consolidated. Addresses of inventors are divided into five regional levels: prefecture (to, 

do, fu, or ken), municipality (shi, ku, cho, or son), city block (chome or aza), land number 

(banchi or ban), and land number extension (go). For the applicant information, we use 

the applicant name and identification number given by the JPO. The identification number 

is replaced by a firm ID (NID) used in the “NISTEP Dictionary of Corporate Names 

Version 2015.1” developed by NISTEP if the information can be successfully matched to 

the IIP-PD using a converter also provided by NISTEP.13 

Next, we apply a patent-inventor disambiguation algorithm developed by Li et al. 

(2014) to the normalized data. The algorithm involves the following steps. First, the 

patent-inventor level dataset is prepared for analysis. Each record of “inventor” table in 

the IIP-PD is a unit of analysis, identified by a combination of the patent application 

number (ida) and a sequential number of inventor for each patent application (seq). 

Second, the records are blocked based on predetermined criteria that are likely to be 

satisfied by most matching records. We divided the records in which the inventor names 

are identical into a block. Third, for all pairs of the records within blocks, a vector of 

similarity (known as the similarity profile) for a record pair is computed. The similarity 

                                                        

12 http://www.iip.or.jp/patentdb/ 
13 http://www.nistep.go.jp/research/scisip/data-and-information-infrastructure 
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profile for any two inventor-patent records 𝑖 and 𝑗 in a block is defined as the following 

multi-dimensional vector:  

𝐱𝑖𝑗 = (𝑥1,𝑖𝑗 𝑥2,𝑖𝑗 ⋯ 𝑥𝑘,𝑖𝑗 ⋯ 𝑥𝐾−1,𝑖𝑗 𝑥𝐾,𝑖𝑗) 

where 𝑥𝑘,𝑖𝑗 is the degree of similarity of records 𝑖 and 𝑗 based on the 𝑘th attribute. 

Table A1-1 represents the definition of the similarity profile in this study. 

 

(Table A1-1) 

 

Fourth, using predetermined training sets, we compute the likelihood that matching 

pairs and non-matching pairs could give rise to each similarity profile. Likelihood ratio 

(r-value) for a similarity profile 𝐱 is defined as: 

𝑟(𝐱) =
𝑃(𝐱|𝑀)

𝑃(𝐱|𝑁)
 

where 𝑃(𝐱|𝑀)  and 𝑃(𝐱|𝑁)  is the proportion of times that similarity profile 𝐱 

appeared in the match set and non-match set respectively. In this study, we define a match 

set as a group of record pairs of matched inventor full names defined as rare with respect 

to all inventor names, and non-match set as a group of record pairs of non-matching 

inventor full names chosen from the rare name list. We define rare names as names that 

do not appear more than two times a year in the telephone directory published by Nippon 

Telegraph and Telephone Corporation during 2000-2012. 

Fifth, we estimate the posterior probability of a match for all record pairs using the 

likelihood ratio calculated from the training sets. Posterior probability is defined by Bayes’ 

theorem as follows,  

𝑃(𝑀𝑖𝑗|𝐱𝑖𝑗) =
1

1 +
1 − 𝑃(𝑀𝑖𝑗)

𝑃(𝑀𝑖𝑗)

1

𝑟(𝐱𝑖𝑗)

 

where 𝑃(𝑀𝑖𝑗)  is the prior probability of a match. The prior probability is calculated 

using the original algorithm. 

Finally, using the posterior match probability for all record pairs within the blocks 

and a set of thresholds, record pairs with relatively high probabilities are merged into a 

cluster iteratively. We used a set of seven thresholds (0.99, 0.95, 0.90, 0.8, 0.7, 0.6, and 

0.5). Iterative clustering starts from the highest threshold (0.99) to the lowest threshold 
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(0.5)14.  

The disambiguation algorithm used in Li et al. (2014) is publicly available on the 

GitHub website15. However, since it was developed for the patent data in the U.S., it is 

necessary to modify it to apply to patent data in Japan. Table A1-2 summarizes the 

modified points. First, the original algorithm uses the first, middle, and last names as 

inventor name attributes, and allow for misspelling or abbreviation in names by 

implementing several blocking rules. Compared to the original program, we do not divide 

the name attribute and do not allow for any variation in inventor names because Japanese 

names usually do not contain middle names, and the abbreviation of inventor names rarely 

occurs in Japan.  

For the technology class, we use the IPC while Li et al. (2014) used the US 

technology class. Furthermore, although the original program allows multiple technology 

classes, since the IIP-PD contains one main IPC code for each patent, we modify the 

definition of the similarity score for the technology class attribute. 

Although Japanese patents have multiple applicants (assignees), the algorithm 

assumes a single assignee. For that reason, we use only the information of the applicant 

that appears first.  

We significantly changed the training sets’ creation rules. Li et al. (2014) uses two 

types of training sets. One training set is based on patent features and is used to learn 

ambiguity in name features. Another training set is based on name features and is used to 

learn ambiguity in patent features. In this study, because we do not allow for variations in 

the name attribute within a block, training sets for name features are not necessary. 

Similar to the original algorithm, rare names are used to generate training sets for patent 

features. While the original algorithm determines rare names within patent inventors, we 

obtain the list of rare names from the telephone directory in order to improve the 

reliability of training sets. 

 

(Table A1-2) 

                                                        

14 Iterative clustering is a complex process and requires some parameters to be set. Following the original 

program, the “minimum threshold” is set to 0.3 and the “effective comparison count” is set to one-fourth 

the number of combinations of the members between two clusters. For details regarding iterative 

clustering, see Li et al. (2014). 
15 https://github.com/funginstitute/disambiguator 
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We run the modified program on the following system: 

 CPU: 20Core Xeon E5‒2660 v3 2.6GHz (10core x 2CPU) 

 Memory: 64GB (8GBx8) ECC Registered DDR4‒2133 Quad‒Channel 

 OS： Linux (Ubuntu) on Windows 10 using VMWare Workstation 12 Player 

 CPLEX：IBM ILOG CPLEX Optimization Studio Version 12.6.2 

Appendix 2. Detailed Matching Results of Patent Applicants and Census Data 

Table A2 gives the detailed results for all organizations, including the breakdown by the 

match levels. Figure A2 shows the yearly matching rates for firms. 

 

(Table A2) (Figure A2 (a) and (b)) 

 

Appendix 3. NPL Citations of JP Patent Applications 

Most studies regarding science-industry linkage focus on the NPL citations of US patents 

because the US Patent Act requires applicants to disclose their knowledge of prior art 

documents and the US patent database is well organized. 

The Japanese Patent Act did not require information disclosure until 2002. Thus, 

prior art documents regarding front-page references of the Japanese patent gazette are 

listed by patent examiners. Citations by inventors/applicants are often embedded in the 

text of detailed technical descriptions. In this paper, we used information of NPL cited by 

inventors/applicants in Japanese patent applications, from a database we purchased from 

the Artificial Life Laboratory, Inc. They identified and extracted patent and NPL 

documents cited in technical descriptions, using their text-mining algorithm based on 

Tamada et al. (2006) and further developed it. The database comprises Japanese patent 

application publications (including applications based on the Patent Cooperation Treaty 

(PCT); 8.2 million records total), and Japanese granted patents (3.6 million records), for 

which gazettes were published between 1993 and 2015.  

To calculate the average number of NPL citations in Table 3, we used the NPL 

citations of 3.4 million patent application publications, whose applicants are Japanese 

firms with an earliest priority year between 2000 and 2011 (see Table A3).  
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(Table A3) 

 

To compare the NPL citation information in the Tamada DB with that of the US 

patents, we used the EPO PATSTAT database and extracted US patents in the DOCDB 

family of Japanese patent applications corresponding to the US patents. Figure A3 shows 

the average number of NPL citations of JP applications ((2) in Table A3) and the 

corresponding US patents ((3) in Table A3) by technology areas of the World Intellectual 

Property Organization (WIPO). We observed very similar tendencies. 

 

(Figure A3) 

 

Appendix 4. NPL citations matched and unmatched to Scopus 

We used matched data of NPL citations and Scopus and made a graph comparable to 

Figure 10, indicating the share of patents both academic-related patents and patents citing 

NPL matched to Scopus (Both), that with only NPL citations matched to Scopus (only 

NPL), that with only academic related patents (only A-Pat) and that with “NPL citations 

not matched to Scopus” by technology areas. 

 

(Figure A4) 
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Tables and Figures 

Table 1: Results of disambiguation of patent inventors 

 

Source: Authors’ calculations based on Scopus, the IIP patent database, and the KAKEN 

database. 

 

  

(1) (2) (3)

Disambiguation methods :     
Modified Li et. al.

(2014) Algorithm
Name Match

Name-Address-

Applicant Match

  Inventor-patent records 12,397,820 - -

  Disambiguated inventors 1,709,880 - -

  KAKEN records (inventor-patent records) 11,958 11,974 11,974

  KAKEN inventors 5,984 5,992 5,992

6,221 5,973 7,835

96.2% 100.3% 76.4%

233 2 1,227

3.89% 0.03% 20.50%

14 42 6

0.23% 0.70% 0.10%

288 2 2,233

2.41% 0.02% 18.67%

34 65 8

0.28% 0.54% 0.08%

  Disambiguated KAKEN inventors

  KAKEN inventors with splitting error

  KAKEN inventors with lumping error

  KAKEN records with splitting error

  KAKEN records with lumping  error
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Figure 1: Patent inventors and academic authors active in 2008-2011 in Japan 

 

Source: Authors. 

 

Table 2: Patent inventors and academic authors active in 2000-2011 in Japan 

 

Source: Authors’ calculations based on Scopus and the IIP patent database. 

 

  

2000-03 2004-07 2008-11 Total

 [A] Number of authors 316,031 355,936 381,660 739,372

 [B] Number of all inventors 673,927 623,849 562,822 1,229,027

 [C] Number of academic inventors 21,437 31,421 30,505 53,446

 [C/B] Proportion of academia in inventors 3.2% 5.0% 5.4% 4.3%

 [D] Number of patenting authors 9,532 15,726 15,598 26,333

 [D/A] Proportion of inventors in authors 3.0% 4.4% 4.1% 3.6%

 [D/B] Proportion of authors in inventors 1.4% 2.5% 2.8% 2.1%

Academic inventors 

(30,505) 

Patent inventors in 

IIP-PD 

(562,822) 

Academic authors 

in Scopus 

(381,660) 

Patenting academic authors 

(15,598) 
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Table 3: Number of Establishments by Type 

 

Source: Authors’ calculations based on the Establishment and Enterprise Census of Japan, 

and the Economic Census of Japan. 

 

Table 4: The Result of Patent-Organization Linkage (for patent applications in 1964-

2013) 

 

Source: Authors calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan. 

  

Census Year Headquarter Branch Single Est. Total     

2001 229,436 1,185,929 4,722,947 6,138,312

2004 262,994 1,141,894 4,323,604 5,728,492

2006 228,664 1,255,827 4,238,068 5,722,559

2009 287,715 1,375,189 4,193,038 5,855,942

2012 270,634 1,296,421 3,855,672 5,422,727

Census Year 2001 2004 2006 2009 2012

(a) Result for All Organizations

The Number of Organizations in Census 5,340,669 5,686,451 4,899,465 4,771,478 4,608,794

with Patent Applications 76,563 72,623 70,754 68,243 71,814

Percentage 1.43% 1.28% 1.44% 1.43% 1.56%

The Total Number of Applicants 11,038,633 11,038,633 11,038,633 11,038,633 11,038,633

Matched with Census 8,118,664 7,279,551 6,956,094 6,582,984 6,290,922

Matching Rate 73.55% 65.95% 63.02% 59.64% 56.99%

(b) Result for Firms

The Number of Firms in Census 4,996,128 5,345,139 4,518,292 4,444,657 4,319,762

with Patent Applications 74,971 71,296 69,331 66,785 63,278

Percentage 1.50% 1.33% 1.53% 1.50% 1.46%

The Total Number of Applicants* 9,338,755 9,338,755 9,338,755 9,338,755 9,338,755

Matched with Census 8,026,372 7,225,007 6,864,457 6,493,430 5,994,118

Matching Rate 85.95% 77.37% 73.51% 69.53% 64.19%

(*) The total number of applicant firms are the total number of applicants each of which is linked to at least one

organization in the five census data sets and whose organization type indicate "private firm" (See Section 2-2 for details)
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Figure 2: Temporal performance of the Linking Procedure: All Organizations 

(a) For Applications between 1995 and 2013 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan. 

 

(b) For Applications in the Full Period (1964-2013) 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan.  
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Table 5: Patent Applications and Applicants Failed in the Linking Procedure for All 

Census Datasets 

 

Note: The failed applicants are identified by their names and address. 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan. 

 

Figure 3: Framework of indicators 

 

Source: Authors. 

The Total Number of Patent Applicants 11,038,633

Failed with All Census Data Sets 1,365,806

Percentage 12.37%

The Number of Failed Applicants 86,119
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Table 6a: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2000-2003) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

10 Multidisciplinary 0.005 0.003 0.002 0.003 0.007 0.006 0.000 0.010 0.013 0.013 0.018 0.004 0.009 0.017 0.059 0.028 0.005 0.016 0.016 0.008 0.008 0.004 0.004 0.005 0.012 0.001 0.013 0.004 0.030 0.001 0.002 0.002 0.005 0.008 0.001

11 Agricultural and Biological Sciences 0.013 0.003 0.003 0.003 0.002 0.014 0.000 0.007 0.006 0.047 0.069 0.010 0.041 0.127 0.376 0.232 0.035 1.041 0.217 0.009 0.008 0.007 0.041 0.097 0.019 0.030 0.026 0.025 0.218 0.035 0.008 0.007 0.068 0.020 0.025

12 Arts and Humanities 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

13 Biochemistry, Genetics and Molecular Biology 0.050 0.017 0.019 0.029 0.025 0.124 0.000 0.052 0.049 0.277 0.462 0.090 0.559 0.834 1.734 1.595 0.197 0.672 0.248 0.051 0.066 0.127 0.123 0.169 0.130 0.033 0.066 0.073 0.519 0.041 0.069 0.030 0.061 0.114 0.048

14 Business, Management and Accounting 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.003 0.001 0.003 0.002 0.013 0.007 0.000 0.003 0.004 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.003 0.001 0.001 0.002 0.000 0.000 0.001

15 Chemical Engineering 0.085 0.009 0.002 0.001 0.014 0.019 0.000 0.037 0.025 0.072 0.098 0.029 0.143 0.133 0.120 0.073 0.132 0.090 0.168 0.151 0.092 0.089 0.383 0.205 0.025 0.079 0.078 0.084 0.092 0.154 0.054 0.032 0.016 0.057 0.023

16 Chemistry 0.324 0.040 0.006 0.012 0.009 0.033 0.000 0.127 0.151 0.332 0.594 0.013 0.113 1.218 0.215 0.333 0.590 0.168 0.530 0.344 0.297 0.399 0.609 0.279 0.041 0.089 0.136 0.197 0.188 0.082 0.069 0.031 0.121 0.093 0.038

17 Computer Science 0.027 0.081 0.198 0.241 0.284 0.407 0.000 0.028 0.048 0.095 0.036 0.239 0.110 0.007 0.016 0.005 0.012 0.002 0.011 0.008 0.009 0.053 0.012 0.038 0.398 0.014 0.020 0.008 0.009 0.028 0.047 0.073 0.338 0.149 0.031

18 Decision Sciences 0.000 0.001 0.002 0.011 0.002 0.006 0.000 0.000 0.000 0.002 0.001 0.011 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.006 0.008 0.000

19 Earth and Planetary Sciences 0.018 0.005 0.019 0.010 0.048 0.019 0.000 0.013 0.009 0.074 0.044 0.024 0.014 0.009 0.009 0.012 0.008 0.005 0.022 0.019 0.023 0.019 0.020 0.071 0.009 0.013 0.048 0.003 0.019 0.032 0.031 0.065 0.019 0.029 0.071

20 Economics, Econometrics and Finance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

21 Energy 0.084 0.004 0.002 0.001 0.007 0.013 0.000 0.031 0.010 0.035 0.041 0.019 0.025 0.023 0.005 0.004 0.014 0.004 0.093 0.070 0.040 0.034 0.107 0.120 0.023 0.020 0.276 0.020 0.028 0.210 0.066 0.016 0.003 0.033 0.017

22 Engineering 0.418 0.310 0.528 0.341 0.744 0.395 0.000 0.361 0.487 0.548 0.355 0.545 0.472 0.046 0.057 0.043 0.067 0.015 0.183 0.212 0.300 0.351 0.246 0.265 0.987 0.478 0.621 0.092 0.131 0.452 0.785 0.553 0.838 0.689 0.287

23 Environmental Science 0.007 0.002 0.004 0.010 0.005 0.008 0.000 0.004 0.003 0.024 0.032 0.005 0.007 0.021 0.042 0.020 0.022 0.038 0.036 0.014 0.009 0.004 0.039 0.125 0.007 0.011 0.022 0.012 0.034 0.023 0.039 0.007 0.011 0.014 0.012

24 Immunology and Microbiology 0.007 0.002 0.002 0.010 0.004 0.021 0.000 0.015 0.007 0.054 0.087 0.013 0.055 0.124 0.442 0.341 0.023 0.152 0.042 0.006 0.006 0.006 0.020 0.088 0.006 0.009 0.005 0.016 0.218 0.012 0.008 0.005 0.002 0.003 0.025

25 Materials Science 0.474 0.163 0.035 0.028 0.132 0.070 0.000 0.684 0.355 0.337 0.446 0.068 0.389 0.239 0.095 0.115 0.834 0.038 0.574 1.279 0.992 0.875 0.476 0.286 0.087 0.623 0.243 0.411 0.416 0.176 0.310 0.054 0.149 0.155 0.096

26 Mathematics 0.003 0.004 0.005 0.032 0.026 0.046 0.000 0.005 0.008 0.017 0.009 0.042 0.020 0.004 0.007 0.003 0.004 0.008 0.008 0.004 0.005 0.009 0.004 0.003 0.018 0.005 0.013 0.005 0.003 0.007 0.005 0.004 0.041 0.052 0.009

27 Medicine 0.064 0.040 0.035 0.049 0.021 0.131 0.000 0.061 0.044 0.185 0.251 0.111 1.124 0.504 0.907 1.550 0.092 0.155 0.115 0.048 0.040 0.054 0.036 0.116 0.103 0.020 0.040 0.027 0.351 0.066 0.057 0.104 0.085 0.061 0.053

28 Neuroscience 0.006 0.015 0.004 0.008 0.004 0.027 0.000 0.007 0.009 0.034 0.049 0.019 0.132 0.101 0.178 0.276 0.019 0.038 0.005 0.007 0.003 0.012 0.011 0.024 0.020 0.007 0.006 0.002 0.113 0.005 0.005 0.008 0.060 0.036 0.003

29 Nursing 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.011 0.004 0.004 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000

30 Pharmacology, Toxicology and Pharmaceutics 0.008 0.003 0.005 0.010 0.007 0.015 0.000 0.008 0.006 0.043 0.069 0.004 0.079 0.329 0.171 0.506 0.044 0.097 0.034 0.006 0.007 0.056 0.027 0.016 0.033 0.005 0.008 0.010 0.081 0.012 0.008 0.007 0.007 0.014 0.006

31 Physics and Astronomy 0.915 0.484 0.156 0.100 0.446 0.169 0.000 1.537 1.317 0.704 0.742 0.180 0.337 0.173 0.116 0.107 0.187 0.082 0.582 0.759 1.446 0.938 0.525 0.512 0.139 0.475 0.753 0.243 0.279 0.381 0.318 0.146 0.172 0.462 0.099

32 Psychology 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.003 0.001 0.008 0.003 0.007 0.011 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.009 0.000 0.003 0.000 0.001 0.004 0.037 0.001 0.000

33 Social Sciences 0.002 0.002 0.001 0.002 0.001 0.008 0.000 0.000 0.000 0.003 0.002 0.008 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.002 0.001 0.000 0.001 0.000 0.000 0.006 0.003 0.003 0.001 0.027 0.003

34 Veterinary 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.004 0.007 0.000 0.008 0.007 0.029 0.026 0.002 0.026 0.007 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.001 0.012 0.001 0.000 0.000 0.004 0.000 0.000

35 Dentistry 0.001 0.001 0.003 0.004 0.000 0.001 0.000 0.001 0.001 0.009 0.014 0.001 0.089 0.014 0.020 0.041 0.001 0.005 0.000 0.004 0.001 0.001 0.000 0.001 0.001 0.002 0.000 0.002 0.002 0.000 0.001 0.006 0.005 0.001 0.000

36 Health Professions 0.001 0.001 0.001 0.002 0.000 0.005 0.000 0.002 0.002 0.004 0.005 0.001 0.028 0.006 0.007 0.014 0.003 0.001 0.002 0.005 0.002 0.000 0.001 0.013 0.002 0.000 0.006 0.000 0.003 0.012 0.001 0.001 0.018 0.007 0.001

Science Field (ASJC)

Technology Class (WIPO)



33 

 

Table 6b: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2004-2007) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

10 Multidisciplinary 0.008 0.001 0.002 0.001 0.006 0.009 0.001 0.010 0.008 0.011 0.018 0.003 0.007 0.025 0.058 0.033 0.006 0.030 0.013 0.008 0.010 0.020 0.006 0.007 0.007 0.003 0.007 0.003 0.032 0.001 0.002 0.011 0.001 0.001 0.007

11 Agricultural and Biological Sciences 0.013 0.009 0.011 0.006 0.010 0.027 0.014 0.008 0.004 0.064 0.095 0.007 0.029 0.125 0.357 0.226 0.047 1.200 0.246 0.012 0.007 0.006 0.034 0.157 0.038 0.051 0.031 0.036 0.372 0.050 0.010 0.010 0.039 0.047 0.088

12 Arts and Humanities 0.003 0.004 0.001 0.001 0.001 0.010 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.008 0.002 0.012 0.002 0.001 0.002 0.002 0.002 0.004 0.001 0.004 0.003 0.000 0.000 0.020 0.004

13 Biochemistry, Genetics and Molecular Biology 0.078 0.040 0.042 0.077 0.042 0.258 0.267 0.060 0.054 0.348 0.597 0.156 0.483 1.031 1.744 1.662 0.269 0.959 0.279 0.086 0.083 0.133 0.110 0.195 0.159 0.047 0.049 0.108 0.633 0.045 0.071 0.036 0.149 0.093 0.047

14 Business, Management and Accounting 0.001 0.002 0.002 0.004 0.000 0.005 0.012 0.002 0.001 0.003 0.005 0.012 0.004 0.005 0.016 0.011 0.001 0.017 0.004 0.001 0.000 0.006 0.001 0.002 0.003 0.006 0.000 0.001 0.003 0.000 0.002 0.000 0.000 0.004 0.004

15 Chemical Engineering 0.117 0.024 0.012 0.009 0.012 0.037 0.027 0.052 0.030 0.110 0.150 0.064 0.161 0.120 0.110 0.077 0.178 0.117 0.167 0.201 0.123 0.137 0.396 0.231 0.051 0.094 0.106 0.132 0.121 0.205 0.097 0.024 0.056 0.039 0.027

16 Chemistry 0.432 0.060 0.015 0.025 0.050 0.058 0.019 0.216 0.186 0.343 0.575 0.047 0.075 1.098 0.270 0.281 0.737 0.166 0.492 0.460 0.349 0.646 0.557 0.245 0.067 0.102 0.199 0.198 0.194 0.115 0.088 0.016 0.140 0.088 0.063

17 Computer Science 0.045 0.197 0.348 0.595 0.313 0.815 0.347 0.054 0.086 0.142 0.050 0.497 0.143 0.015 0.027 0.014 0.018 0.008 0.021 0.019 0.017 0.055 0.020 0.099 0.504 0.042 0.052 0.043 0.025 0.018 0.125 0.117 0.272 0.262 0.039

18 Decision Sciences 0.001 0.001 0.003 0.015 0.000 0.010 0.033 0.001 0.002 0.001 0.000 0.031 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002 0.000 0.001 0.001 0.000 0.003 0.001 0.002 0.001 0.000

19 Earth and Planetary Sciences 0.024 0.011 0.025 0.011 0.027 0.029 0.033 0.010 0.021 0.096 0.062 0.024 0.016 0.010 0.021 0.010 0.008 0.016 0.029 0.029 0.016 0.038 0.029 0.097 0.009 0.040 0.084 0.004 0.032 0.030 0.046 0.079 0.009 0.007 0.166

20 Economics, Econometrics and Finance 0.000 0.001 0.000 0.000 0.000 0.001 0.006 0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.002

21 Energy 0.138 0.012 0.010 0.003 0.008 0.012 0.017 0.029 0.013 0.041 0.042 0.022 0.021 0.022 0.008 0.006 0.020 0.013 0.113 0.082 0.074 0.021 0.123 0.172 0.012 0.043 0.413 0.023 0.025 0.260 0.046 0.041 0.026 0.015 0.027

22 Engineering 0.886 0.677 1.077 0.919 1.438 0.977 0.441 0.758 0.884 0.949 0.721 1.494 0.783 0.326 0.221 0.218 1.365 0.088 0.423 0.431 0.499 1.118 0.411 0.500 1.629 0.860 0.897 0.663 0.617 0.663 1.189 1.008 0.731 0.688 0.652

23 Environmental Science 0.012 0.003 0.004 0.001 0.002 0.012 0.012 0.005 0.004 0.035 0.049 0.013 0.009 0.025 0.047 0.025 0.024 0.050 0.058 0.022 0.006 0.009 0.048 0.206 0.007 0.024 0.044 0.014 0.049 0.039 0.017 0.005 0.034 0.001 0.050

24 Immunology and Microbiology 0.007 0.005 0.009 0.003 0.008 0.029 0.032 0.009 0.005 0.054 0.098 0.027 0.058 0.175 0.472 0.346 0.022 0.203 0.067 0.010 0.017 0.014 0.011 0.094 0.013 0.024 0.011 0.018 0.196 0.013 0.003 0.010 0.022 0.031 0.010

25 Materials Science 0.689 0.204 0.078 0.050 0.246 0.118 0.083 0.637 0.369 0.358 0.455 0.109 0.358 0.251 0.105 0.123 0.877 0.057 0.519 1.546 0.923 0.776 0.519 0.374 0.160 0.859 0.457 0.581 0.485 0.224 0.393 0.085 0.135 0.148 0.157

26 Mathematics 0.016 0.028 0.033 0.107 0.043 0.128 0.124 0.014 0.013 0.021 0.013 0.091 0.025 0.007 0.008 0.006 0.003 0.002 0.005 0.005 0.004 0.015 0.006 0.009 0.046 0.016 0.011 0.007 0.007 0.013 0.019 0.011 0.065 0.028 0.010

27 Medicine 0.083 0.093 0.053 0.042 0.038 0.199 1.019 0.081 0.057 0.311 0.527 0.225 1.327 0.802 1.129 1.816 0.091 0.345 0.132 0.053 0.043 0.070 0.040 0.170 0.288 0.041 0.056 0.015 0.433 0.071 0.075 0.065 0.439 0.190 0.064

28 Neuroscience 0.011 0.017 0.004 0.002 0.008 0.030 0.019 0.008 0.013 0.041 0.071 0.026 0.146 0.159 0.140 0.333 0.007 0.036 0.024 0.008 0.003 0.017 0.008 0.018 0.038 0.004 0.005 0.005 0.169 0.011 0.028 0.007 0.104 0.019 0.007

29 Nursing 0.000 0.001 0.000 0.000 0.000 0.002 0.040 0.001 0.000 0.002 0.003 0.001 0.009 0.005 0.003 0.012 0.000 0.003 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.008 0.001 0.001

30 Pharmacology, Toxicology and Pharmaceutics 0.008 0.007 0.008 0.005 0.014 0.024 0.041 0.007 0.007 0.053 0.089 0.007 0.071 0.339 0.181 0.462 0.068 0.128 0.046 0.013 0.007 0.034 0.021 0.017 0.031 0.008 0.006 0.008 0.050 0.011 0.009 0.003 0.048 0.015 0.005

31 Physics and Astronomy 1.393 0.627 0.344 0.334 0.708 0.308 0.094 1.836 1.753 0.886 0.933 0.364 0.474 0.213 0.128 0.130 0.225 0.087 0.565 0.846 1.324 1.419 0.621 0.653 0.179 0.575 0.826 0.355 0.316 0.437 0.367 0.125 0.198 0.394 0.174

32 Psychology 0.001 0.001 0.000 0.000 0.000 0.006 0.019 0.000 0.001 0.003 0.004 0.008 0.012 0.005 0.005 0.010 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.006 0.001 0.003 0.000 0.002 0.006 0.001 0.006 0.004 0.003 0.000

33 Social Sciences 0.002 0.007 0.020 0.022 0.009 0.026 0.052 0.002 0.009 0.008 0.004 0.040 0.007 0.002 0.004 0.003 0.001 0.002 0.001 0.001 0.001 0.003 0.003 0.006 0.018 0.001 0.002 0.002 0.002 0.007 0.006 0.014 0.015 0.017 0.018

34 Veterinary 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.006 0.010 0.001 0.008 0.015 0.040 0.036 0.001 0.042 0.007 0.001 0.000 0.003 0.000 0.009 0.000 0.002 0.000 0.001 0.014 0.000 0.000 0.000 0.019 0.001 0.000

35 Dentistry 0.002 0.001 0.001 0.001 0.000 0.001 0.001 0.003 0.001 0.004 0.005 0.006 0.127 0.023 0.024 0.047 0.009 0.000 0.000 0.007 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.007 0.010 0.001 0.002 0.018 0.008 0.000

36 Health Professions 0.002 0.002 0.001 0.001 0.000 0.006 0.025 0.002 0.002 0.005 0.006 0.006 0.050 0.021 0.010 0.025 0.002 0.002 0.009 0.001 0.001 0.002 0.002 0.011 0.007 0.001 0.013 0.000 0.005 0.004 0.003 0.002 0.026 0.003 0.001

Technology Class (WIPO)

Science Field (ASJC)
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Table 6c: Avg. Number of Publications per Patent of Academic Inventors by Science Field and Technology Class (2008-2011) 

 

Source: Authors’ calculations based on Scopus and the IIP Patent Database 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

10 Multidisciplinary 0.004 0.008 0.003 0.001 0.010 0.013 0.016 0.020 0.011 0.025 0.043 0.005 0.018 0.040 0.089 0.061 0.013 0.034 0.022 0.014 0.014 0.022 0.009 0.027 0.007 0.011 0.018 0.006 0.043 0.008 0.011 0.008 0.003 0.002 0.003

11 Agricultural and Biological Sciences 0.017 0.007 0.006 0.006 0.010 0.028 0.042 0.007 0.013 0.066 0.119 0.011 0.036 0.124 0.423 0.204 0.039 1.290 0.255 0.021 0.021 0.017 0.043 0.137 0.022 0.043 0.031 0.039 0.520 0.044 0.020 0.026 0.022 0.013 0.113

12 Arts and Humanities 0.000 0.009 0.005 0.003 0.003 0.040 0.008 0.000 0.001 0.001 0.001 0.004 0.002 0.001 0.001 0.002 0.001 0.000 0.000 0.001 0.001 0.003 0.001 0.001 0.005 0.002 0.000 0.002 0.000 0.000 0.000 0.003 0.000 0.015 0.000

13 Biochemistry, Genetics and Molecular Biology 0.077 0.040 0.031 0.028 0.066 0.161 0.319 0.063 0.072 0.432 0.843 0.117 0.549 1.079 1.951 1.804 0.191 0.851 0.273 0.093 0.110 0.148 0.165 0.195 0.102 0.073 0.091 0.142 0.567 0.074 0.059 0.048 0.144 0.183 0.030

14 Business, Management and Accounting 0.001 0.002 0.002 0.008 0.000 0.013 0.026 0.001 0.002 0.002 0.003 0.022 0.003 0.002 0.004 0.004 0.001 0.009 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.004 0.001 0.002 0.003 0.001 0.000 0.001 0.003 0.001 0.002

15 Chemical Engineering 0.123 0.021 0.007 0.005 0.020 0.026 0.012 0.067 0.042 0.115 0.170 0.085 0.118 0.268 0.164 0.105 0.225 0.104 0.223 0.205 0.131 0.224 0.449 0.234 0.031 0.049 0.100 0.152 0.128 0.245 0.108 0.028 0.052 0.038 0.029

16 Chemistry 0.382 0.059 0.016 0.021 0.048 0.036 0.049 0.233 0.173 0.305 0.554 0.059 0.110 1.034 0.310 0.355 0.778 0.231 0.564 0.511 0.435 0.728 0.734 0.297 0.038 0.118 0.170 0.250 0.270 0.169 0.073 0.016 0.131 0.075 0.033

17 Computer Science 0.140 0.425 0.708 0.954 0.840 1.546 1.151 0.133 0.251 0.360 0.119 1.321 0.459 0.031 0.065 0.040 0.043 0.046 0.093 0.043 0.056 0.206 0.078 0.050 1.675 0.100 0.133 0.049 0.060 0.159 0.493 0.295 0.919 0.473 0.168

18 Decision Sciences 0.001 0.002 0.002 0.008 0.007 0.017 0.025 0.001 0.000 0.003 0.000 0.029 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.002 0.003 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.001 0.002

19 Earth and Planetary Sciences 0.012 0.006 0.009 0.007 0.010 0.025 0.038 0.016 0.033 0.109 0.081 0.016 0.021 0.008 0.020 0.008 0.006 0.008 0.042 0.044 0.013 0.008 0.038 0.158 0.016 0.056 0.083 0.002 0.026 0.066 0.067 0.126 0.026 0.000 0.222

20 Economics, Econometrics and Finance 0.000 0.000 0.000 0.001 0.000 0.002 0.017 0.001 0.001 0.000 0.000 0.003 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000

21 Energy 0.241 0.010 0.005 0.005 0.050 0.015 0.052 0.053 0.013 0.067 0.066 0.057 0.017 0.026 0.024 0.009 0.027 0.012 0.128 0.139 0.072 0.046 0.149 0.156 0.024 0.040 0.440 0.030 0.030 0.269 0.108 0.101 0.025 0.006 0.058

22 Engineering 0.915 0.575 0.801 0.608 1.588 0.692 0.498 1.122 0.775 1.043 0.725 1.310 0.792 0.145 0.234 0.195 0.218 0.138 0.425 0.793 0.716 1.287 0.539 0.414 1.401 1.349 0.819 0.305 0.393 0.781 1.652 1.179 1.030 0.688 0.981

23 Environmental Science 0.023 0.004 0.004 0.003 0.006 0.009 0.065 0.007 0.009 0.042 0.060 0.014 0.023 0.042 0.067 0.033 0.039 0.066 0.064 0.044 0.018 0.023 0.098 0.286 0.009 0.026 0.097 0.022 0.101 0.291 0.046 0.019 0.008 0.025 0.107

24 Immunology and Microbiology 0.010 0.008 0.009 0.004 0.005 0.013 0.034 0.009 0.004 0.057 0.110 0.012 0.052 0.179 0.450 0.392 0.024 0.172 0.044 0.010 0.009 0.002 0.016 0.084 0.003 0.006 0.004 0.009 0.125 0.012 0.016 0.004 0.006 0.020 0.002

25 Materials Science 0.577 0.236 0.163 0.069 0.339 0.081 0.036 0.798 0.510 0.412 0.487 0.103 0.412 0.269 0.178 0.191 0.829 0.122 0.625 1.198 0.848 0.861 0.540 0.304 0.102 0.905 0.346 0.491 0.452 0.281 0.403 0.164 0.126 0.188 0.115

26 Mathematics 0.026 0.056 0.073 0.125 0.131 0.213 0.341 0.023 0.041 0.070 0.042 0.281 0.070 0.010 0.024 0.010 0.017 0.009 0.013 0.018 0.012 0.039 0.022 0.029 0.112 0.032 0.037 0.006 0.018 0.039 0.089 0.056 0.127 0.037 0.022

27 Medicine 0.083 0.072 0.066 0.044 0.068 0.203 1.425 0.099 0.084 0.664 1.247 0.277 1.990 1.147 1.791 2.590 0.106 0.349 0.140 0.075 0.109 0.073 0.100 0.272 0.094 0.066 0.141 0.137 0.512 0.053 0.117 0.075 0.379 0.392 0.054

28 Neuroscience 0.010 0.013 0.005 0.004 0.017 0.053 0.071 0.008 0.015 0.052 0.099 0.046 0.170 0.154 0.150 0.285 0.009 0.017 0.009 0.004 0.003 0.003 0.012 0.022 0.016 0.002 0.020 0.007 0.075 0.004 0.005 0.018 0.038 0.062 0.002

29 Nursing 0.000 0.001 0.000 0.000 0.001 0.001 0.024 0.001 0.000 0.005 0.008 0.012 0.021 0.016 0.013 0.037 0.001 0.010 0.002 0.001 0.001 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.005 0.002 0.000 0.001 0.021 0.006 0.000

30 Pharmacology, Toxicology and Pharmaceutics 0.012 0.006 0.008 0.002 0.013 0.022 0.077 0.010 0.010 0.063 0.123 0.019 0.087 0.441 0.227 0.646 0.049 0.102 0.045 0.015 0.014 0.041 0.041 0.027 0.012 0.006 0.015 0.013 0.057 0.016 0.005 0.008 0.011 0.010 0.004

31 Physics and Astronomy 0.784 0.624 0.384 0.193 0.753 0.241 0.104 1.826 1.469 0.841 0.895 0.274 0.516 0.167 0.220 0.159 0.277 0.104 0.625 1.045 1.162 1.213 0.786 1.191 0.141 0.702 1.245 0.245 0.389 0.512 1.080 0.220 0.123 0.640 0.152

32 Psychology 0.001 0.003 0.002 0.002 0.000 0.004 0.034 0.001 0.001 0.003 0.005 0.022 0.012 0.005 0.005 0.008 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.002 0.000 0.002 0.000 0.001 0.000 0.001 0.010 0.026 0.012 0.000

33 Social Sciences 0.005 0.019 0.069 0.050 0.025 0.058 0.060 0.006 0.028 0.020 0.009 0.064 0.017 0.005 0.005 0.007 0.002 0.003 0.001 0.002 0.003 0.006 0.002 0.006 0.028 0.003 0.006 0.005 0.004 0.022 0.015 0.013 0.006 0.030 0.016

34 Veterinary 0.001 0.001 0.001 0.000 0.000 0.003 0.002 0.002 0.000 0.009 0.019 0.001 0.013 0.030 0.045 0.072 0.004 0.035 0.007 0.002 0.001 0.000 0.003 0.002 0.000 0.004 0.000 0.012 0.018 0.000 0.003 0.000 0.000 0.012 0.000

35 Dentistry 0.001 0.002 0.001 0.001 0.000 0.001 0.013 0.002 0.002 0.004 0.009 0.009 0.111 0.028 0.034 0.074 0.005 0.001 0.001 0.010 0.002 0.004 0.001 0.003 0.000 0.000 0.001 0.002 0.003 0.001 0.009 0.000 0.015 0.008 0.006

36 Health Professions 0.002 0.005 0.002 0.002 0.002 0.015 0.022 0.001 0.001 0.006 0.007 0.011 0.058 0.006 0.008 0.013 0.001 0.004 0.001 0.001 0.001 0.003 0.002 0.023 0.005 0.002 0.007 0.005 0.009 0.000 0.005 0.006 0.068 0.021 0.001

Technology Class (WIPO)

Science Field (ASJC)
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Figure 4: Science-Industry Relations in Patents 

 

Source: Authors’ calculations based on Scopus, the IIP patent database, and the 

Economic Census of Japan. 
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Figure 5: Inventor-based Science Intensity (SIINV) in Total Economy 

(Avg. number of linked academic publications per 100 inventors) 

 

Source: Authors’ calculations based on Scopus and the IIP patent database 

 

Figure 6: Employee-based Science Intensity (SIEMP) in Total Economy 

(Avg. number of linked academic publications per 100 employees) 

 

Source: Authors’ calculations based on Scopus and the IIP patent database 
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Figure 7: Employee-based Science Intensity (SIEMP) by Industry 

(Avg. number of linked academic publications per 100 employees) 

 
Source: Authors’ calculations based on Scopus and the IIP patent database 
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Figure 8: Utilization Rate of Science Knowledge (URSK) 

(Share of academic publications linked to industry) 

 

Source: Authors’ calculations based on Scopus and the IIP patent database 

 

Figure 9: Utilization Rate of Science Knowledge (URSK) by the Science Field 

(Share of academic publications linked to industry) 

 

Source: Authors’ calculations based on Scopus and the IIP patent database  
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Figure 10: Comparison with NPL based indicators 

 

Source: Authors’ calculations based on Scopus and the IIP patent database, and 

PATSTAT database 
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Table A1-1: Definition of Similarity Profile 

 

Source: Authors. 

 

Table A1-2. Modifications of Disambiguation Algorithm of Li et al. (2014) 

Li et al. (2014) Our method

Inventor name: First name, middle name,

and last name are distinguished
Do not distinguish first and last name

Technology class: US class IPC

Blocking rule 7 steps 1 step: Exact match of inventor name

2 types: 1 type:

1. Pairs of matched inventor full names,

   defined as rare with respect to all

   inventor names. (Rare names are

   extracted from patent inventors)

Pairs of matched inventor full names,

defined as rare with respect to all

inventor names. (Rare names are extracted

from the telephone directory)

2. Pairs sharing 2 or more common

   coauthors and technology classes

Attributes

Training sets

 

Source: Authors.  

Attributes                   Values

1  if names are completely same.

0  otherwise.

Co-inventors’ names (      )
Number of common co-inventors, where more than 6 common co-inventors is

set to a maximum value of 6.

4  if main IPCs are same at 4 digit level.

3  if main IPCs are same at 3 digit level.

2  if main IPCs are same at 1 digit level.

1 if main IPCs are not available.

0  if main IPCs are completely different.

3  if applicant identification numbers are equal.

2  if applicant names are same.

1  if either applicant identification number or applicant name are not available.

0  if both applicant identification numbers and names are different.

5  if matched at land number extension (go-level).

4  if matched at land number (banchi-level).

3  if matched at city block (chimei-level).

2  if matched at municipality-level.

1  if matched at prefecture-level.

0  otherwise.

Inventor name (      )

Technology class (      )

Applicant (      )

Address (      )

𝑥1

𝑥2

𝑥 

𝑥 

𝑥 
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Table A2: Complete Results of the Linking Procedure (Patent Application Period: 

1964-2013) 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan. 

  

Match Status Organization Type Geo. Level 2001 2004 2006 2009 2012

Full Match 6,410,866 6,326,369 5,854,924 4,970,022 4,469,530

58.08% 57.31% 53.04% 45.02% 40.49%

District 546,155 268,831 561,708 229,168 432,691

4.95% 2.44% 5.09% 2.08% 3.92%

City 810,534 347,836 219,705 1,062,523 1,077,976

7.34% 3.15% 1.99% 9.63% 9.77%

Prefecture 9,711 68,381 40,204 27,324 7,201

0.09% 0.62% 0.36% 0.25% 0.07%

Full Match 259,628 200,345 211,978 219,744 217,852

2.35% 1.81% 1.92% 1.99% 1.97%

District 42,245 35,709 38,390 32,771 27,616

0.38% 0.32% 0.35% 0.30% 0.25%

City 33,329 25,022 24,795 35,397 48,228

0.30% 0.23% 0.22% 0.32% 0.44%

Prefecture 6,196 7,058 4,390 6,035 9,828

0.08% 0.10% 0.06% 0.09% 0.16%

Full Match 7,405 1,552 1,114 2,021 32,118

0.07% 0.01% 0.01% 0.02% 0.29%

District 20,842 23,889 3,517 10,913 10,116

0.19% 0.22% 0.03% 0.10% 0.09%

City 27,268 30,293 35,989 9,899 29,814

3.36% 8.71% 16.38% 0.93% 2.77%

Prefecture 1,558 2,018 376 432 632

0.01% 0.02% 0.00% 0.00% 0.01%

Not Matched 1,164,759 2,040,755 2,278,376 2,138,013 2,302,747

10.55% 18.49% 20.64% 19.37% 20.86%

1,170,379 1,392,433 1,382,996 1,545,876 1,931,640

10.60% 12.61% 12.53% 14.00% 17.50%

527,758 268,142 380,171 748,495 440,644

4.78% 2.43% 3.44% 6.78% 3.99%

Success

Failure

Organization name not matched

Multiple

organizations

Organization address not matched

Multi

establishment

Single

Establishment

Census Year
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Figure A2: Temporal Performance of the Linking Procedure: Firms 

(a) For Applications between 1995 and 2013 

 

(b) For the Full Application Period (1964-2013) 

 

Source: Authors’ calculations based on the IIP patent database, the Establishment and 

Enterprise Census of Japan, and the Economic Census of Japan. 

  

0.4

0.5

0.6

0.7

0.8

0.9

1

2001 2004 2006 2009 2012

0.4

0.5

0.6

0.7

0.8

0.9

1

1
9

6
4

1
9

6
6

1
9

6
8

1
9

7
0

1
9

7
2

1
9

7
4

1
9

7
6

1
9

7
8

1
9

8
0

1
9

8
2

1
9

8
4

1
9

8
6

1
9

8
8

1
9

9
0

1
9

9
2

1
9

9
4

1
9

9
6

1
9

9
8

2
0

0
0

2
0

0
2

2
0

0
4

2
0

0
6

2
0

0
8

2
0

1
0

2
0

1
2

2001 2004 2006 2009 2012



 

43 

 

Table A3. Sample Size Comparison 

PATSTAT

All publications
(1) Applicants

identified as firms

(2) JP Pub. with

Corresponding

US patents

(3) Corresponding

US patents

2000 415,323 336,976 28,239 32,355

2001 415,043 335,936 27,159 31,068

2002 400,676 320,521 27,557 31,569

2003 395,780 311,454 28,672 32,325

2004 402,884 313,361 31,100 34,143

2005 401,433 302,688 30,839 33,534

2006 372,849 281,975 32,055 34,223

2007 354,268 269,182 31,949 33,469

2008 346,554 264,113 30,529 32,263

2009 312,686 232,138 27,285 28,499

2010 300,912 222,778 24,891 25,536

2011 298,557 210,848 16,825 17,159

Total 4,416,965 3,401,970 337,100 366,143

Earliest priority

year

Tamada DB

 

Source: Authors’ calculations based on the Tamada Database and the EPO PATSTAT. 

 

Figure A3. Comparison of NPL Citations of JP and US Patents 

 

Source: Authors’ calculations based on the Tamada Database and the EPO PATSTAT 
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Figure A4. Comparison with NPL citations matched and unmatched to Scopus 

 

Source: Authors’ calculations based on Scopus and the IIP patent database, and 

PATSTAT database   
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