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要約 

 

イノベーションの中には、その技術を利用する主体が自ら開発したものがある。近年さまざまな

事例から、技術利用者が生み出したイノベーション（以下、ユーザー・イノベーションとよぶ）

の重要性が指摘されている。しかし、ユーザー・イノベーションの重要性を定量的な観点から分

析した研究はこれまで存在しない。本稿は、1950～1960年代の日本において開発された２つの製

鋼に係わる技術（多孔ランスとOG装置）を分析対象として、ユーザー・イノベーションの定量的

な評価を行なった最初の論文となる。これらの２つの製鋼技術は、八幡製鉄など製鋼技術の利用

者が中心となって開発したものである。独自に構築したパネルデータを用いて製鋼プロセスをモ

デル化し推定することにより、本稿では当該２つのユーザー・イノベーションが、鉄鋼業の生産

性や生産量、企業利益にもたらした影響を測定した。本分析の結果、分析期間中の鉄鋼生産性上

昇のうち4割、また生産量増加のうち25%がユーザー・イノベーションの登場により説明されるこ

とが明らかになった。多孔ランスとOG装置を生み出した八幡製鉄は、(1) 鉄鋼業の中でも先端的

な技術的課題にいち早く直面しており、(2) イノベーションによる利益が他のどの企業よりも大

きいというリード・ユーザーとしての性質を持つことも確認された。 
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Abstract

This paper examines the economic impact of �user innovation�� innovations developed by

users instead of technology manufacturers � on industry growth and productivity. The paper

focuses on two innovations produced by a Japanese steel company; these innovations improved

the productive e¢ ciency of Austrian-made re�ning technology, namely, basic oxygen furnace

(BOF). Results obtained from the plant-level production-function estimation indicate that user

innovations account for approximately 40 percent of the total factor productivity of the BOF,

substantially promoting the dissemination of the BOF technology. Our simulation analysis indeed

reveals that user innovations contributed to steel output growth by more than 20 percent. This

paper also documents that innovating Japanese companies played the role of a �lead user� in

developing and disseminating their user innovations.

Keywords : user innovation; lead user; total factor productivity; steel

JEL: O31, O33, D24, L61

1 Introduction

Innovations by users of products and processes have been frequently observed in the economy. Among

many examples, the studies of von Hippel (1988) on scienti�c instruments and those of Rosenberg (1976) on

machine tools illustrate the role of users in fostering technological progress. The concept of user innovation

focuses on �rms or individual consumers who expect to bene�t from using a product or service. Thus, it is

in sharp contrast to the traditional concept of innovations wherein manufacturers who expect to gain pro�ts

from selling are supposed to innovate. According to von Hippel (2005; 20), 10 to 40 percent of users develop

or modify diverse products such as snowboards, music synthesizers, and integrated circuits. It is anticipated,

especially in the area of computer software, that users� role in innovative activity will gain in popularity

with the availability of cheaper and faster communication devices (for example, see Weber, 2004). On the

other hand, there is a severe paucity of empirical research that measures the magnitude of the impact of user

�We thank Hiroyuki Odagiri, seminar participants at Universities of Kobe, Okayama and Tohoku for helpful comments.
yDepartment of Economics, Tokyo Keizai Univeristy.
z(Corresponding Author): National Institute of Science and Technology Policy, and Department of Economics, University

of Tokyo. 3-2-2 Kasumigaseki Chiyoda Tokyo 100-0013. ohashi@nistep.go.jp.
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innovation on the productivity and pro�tability that users can avail of. Such empirical research would help

quantitatively assess the importance of the concept of user innovation � a trend that has currently been

featured in the literature by a number of anecdotes.

Using a unique example from the Japanese steel industry, this paper quantitatively examines the eco-

nomic impact of user innovations. After the late 1950s, steel manufacturers around the world gradually

upgraded their re�ning furnace technology, shifting from the conventional open-hearth furnace (hereafter

OHF) to the Austrian-made basic oxygen furnace (BOF). While the introduction of the BOF was praised as

�unquestionably one of the greatest technological breakthroughs in the steel industry during the twentieth

century� (Hogan, 1971: 1543), several technical problems had to be resolved before the BOF technology

was widely implemented. Two major problems were associated with slag slopping and exhaust gas emission.

Developing improved devices to cope with these problems was imperative to ensure steel production that

was cost-e¢ cient and precise in terms of speci�cations and to minimize the negative environmental e¤ects

of steel manufacturing.

In response to the technical di¢ culties, two innovative improvements were introduced in the BOF in

1962, namely, multi-hole lance (hereafter MHL) and oxygen converter gas recovery (hereafter OG) systems:

The MHL enabled substantial reduction in the frequency of slag slopping, and the OG system provided

a method to recycle gas and heat generated from the steel re�ning stage. Interestingly, these innovations

were introduced not by the Austrian, inventor of the BOF, but by a Japanese, importer and user of the

technology. The two user innovations successfully improved the productive e¢ ciency of the BOF use, and

gained wide acceptance among not only domestic but also foreign steel companies. For example, by the late

1970s, �rms such as U.S. Steel, Bethlehem, Armco, and Inland produced steel under the licenses of MHL

and OG systems that were obtained from Japan.

To assess the contribution of user innovations on industry growth and productivity, we employ a unique

plant-level data set that covers the inputs and outputs of the BOF and the installation timing and usage

intensity of the innovations. The data permit estimations of the production function based on the BOF

technology and of the changes in productivity, pro�tability, and output growth both before and after the

adoption of user innovations. Our estimation results for total factor productivity (hereafter TFP) indicate

that user innovations contributed to approximately 40 percent of the BOF productivity growth. Thus, the

advent of steel user innovations probably facilitated the dissemination of BOF technology, thereby promoting

the growth of the Japanese steel industry, as observed in Figure 1. Using simulation analysis, this paper

substantiates the possibility that had the user innovations of the MHL and OG systems not been developed,

the output growth of the Japanese steel industry would have averaged at only 33 percent annually, in contrast

to the actual 40 percent achieved during the study period from 1957 to 1968.

Studies on innovating users show that such innovations are likely to be concentrated among the �lead

users.�According to the de�nition proposed in von Hippel (1986), lead users are ahead of the majority of

users with respect to an important market trend and that they expect to secure large bene�ts by proposing

solutions to their leading edge needs. A close observation of innovations of the MHL and OG systems

as documented in industry trade journals reveals that a company named Yawata appeared to play the

role of a lead-user. As the largest steel producing �rm in Japan, Yawata actively sought solutions for the

technical problems of slag slopping and exhaust gas emissions resulting from BOF use. Indeed, Yawata
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was the �rst to adopt the BOF in Japan and produced the highest share of output through BOF use

during the study period; thus, it had the most number of incentives to improve the productivity of its

BOF. Upon the successful development of its MHL and OG systems, Yawata freely shared the details of its

innovations with other Japanese steel manufacturers, providing additional momentum to the dissemination

of user innovations.1 Our simulation analysis, based on the production function estimation, reveals that the

pro�ts Yawata secured from its innovations of the MHL and OG systems would have far exceeded those of

the company with the second highest pro�ts.

The rest of the paper is organized as follows. Section 2 provides an overview of the Japanese steel

market after the World War II. It mainly describes the two innovations � the MHL and the OG systems

� developed by a user of the BOF technology. Further, it illustrates that the innovating user, i.e., Yawata,

exhibited the characteristics of a lead user and that it freely revealed the technical details and performance of

the innovations to other Japanese manufacturers. Section 3 delineates the framework employed in estimating

the productivity of user innovations. Our plant-level panel data set allows us to address endogeneity issues

in productivity measurement. The estimates indicate that user innovations accounted for approximately

40 percent of the growth in steel-making productivity. Using the obtained estimates, this section also

examines the steel output, considering a hypothetical situation in which no Japanese steel plants adopted

user innovations during the study period from 1957 to 1968. The di¤erence between the actual and simulated

outputs is considered as the contribution made by user innovations. Finally, in Section 3, we calculate the

amount of pro�ts accrued by Japanese steel companies via user innovations. We discover that user innovations

did not bene�tted to all companies uniformly; instead, it was the inventing company that bene�tted the most.

Section 4 provides the concluding remarks, followed by data appendix.

2 User Innovations and Steel Re�ning Technology

Japan experienced a remarkable growth in steel production shortly after World War II. Figure 1 illustrates

that production in this industry expanded more than fourfold between the 1950s and 1960s. This not only

satis�ed the rapidly growing domestic demand but also stimulated steel exports, which grew at over 20

percent annually, raising Japan to the status of the world�s largest steel exporter in 1969.

A large portion of Japanese steel production in the 1950s and 1960s was accounted for by integrated

steel manufacturers. These manufacturers processed raw materials (iron ore and coking coal) into pig iron

in a blast furnace. Pig iron is subsequently converted into crude steel in another furnace by the removal of

carbon and other elements. The prevalent technology used in this second or �re�ning� stage was that of

OHF, wherein air is blown from the bottom of a brick-lined steel shell through molten pig iron. The air

increases the temperature of the pig iron and oxidizes the carbon in it. In the late 1950s, the OHF began

to rapidly lose ground to the BOF. Invented by an Austrian �rm in 1952, the BOF technology involved the

passage of oxygen for the oxidization of the iron and was expected to re�ne molten iron and scrap charge

into steel in approximately 45 minutes� a sharp decrease from the 6 hours normally required by the OHF.

However, in achieving the full technical and economic potential of the Austrian-made technology, global

1While it was freely disclosed in the domestic market, Yawata licensed its innovations to foreign competitors under royalty

agreemnents.
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steelmakers were confronted with two technical problems, namely those associated with (a) slag slopping

and (b) exhaust gas emissions. During the re�ning operation, slag foam was created to improve the BOF

performance. Problem (a) arose when the foam level exceeded the height of the vessel and over�owed, result-

ing in severe dust emissions and yield reduction. Furthermore, steel production needed to be discontinued

to clean the area below the vessel and the vessel mouth. These issues motivated a search for methods to

maintain a suitable foam volume, while preventing the occurrence of slopping. Problem (b) emerged when

more stringent environmental standards were introduced in the late 1950s. The BOF was known to discharge

the most signi�cant level of emissions in the steel-making process. Thus, better air cleaning technology for

controlling emissions was regarded as crucial for the dissemination of the BOF technology. It was primarily

due to problems (a) and (b) that foreign �rms, some of which had implemented the BOF earlier than did

the Japanese, did not extensively adopt the technology.

These technical di¢ culties were resolved by two innovations introduced in 1962. One of them was the

MHL, which adds more oxygen nozzles in the BOF lance to prevent slag slopping. The con�guration change

in the BOF lance of steel companies allows oxygen to be blown at lower velocities and thus reduces splashing

in the BOF. The adoption of the MHL resulted in increased steel-making yield and improved refractory

life; thus, the innovation helped facilitate the scaling up of BOF�s in the mid-1960s. To solve the problem

of exhaust emissions, the OG system was developed to recover gases and fumes released during the BOF

steel-making process. By recycling waste gas, the OG system not only prevented pollution but also reduced

energy usage. Both the MHL and the OG systems were believed to enable steel companies to achieve higher

production rates with lower costs. In Section 3, we will estimate the extent to which these innovations

improved the productivity of the steel re�ning process.

The MHL and OG systems were simultaneously introduced in Japan in 1962. Interestingly, these systems

were not invented by the inventor of the BOF but by a Japanese company, namely, Yawata, which was an

importer and user of the technology. As shown in the left column of Table 1, Yawata produced the largest

amount of steel using the BOF technology, accounting for more than 20 percent of the total output in Japan.

Hence, it is reasonable to consider that Yawata was the most incentivized to improve the e¢ ciency of the

BOF operation. Trade journals, including the Iron and Steel Institute of Japan (1982), revealed that the

MHL and OG systems were the outcome of considerable experimental e¤orts that could only be conducted

by a company with su¢ cient familiarity and experience in using the BOF technology.

Another interesting observation is that Yawata freely disclosed pertinent information concerning the

technical details and the performance of their innovations to domestic competitors. Thus, competing �rms

could liberally use the released information while installing systems developed by Yawata�s innovative tech-

nologies. Yawata, however, did not reveal its innovations to foreign competitors free of charge; instead, it

licensed its innovations under royalty agreements with them. Although it is beyond the scope of this paper

to consider as to why Yawata was so altruistic as to domestically supply such a public good, this type

of free information-disseminating behavior has been frequently observed in other innovations, for example,

blast furnace technology of Cleveland in the U.K. (Allen, 1983) and the Cornish pumping engine (Nuvolari,

2004).2 In all likelihood, Yawata�s voluntary knowledge spillovers helped disseminate its user innovations.

Table 1 presents the di¤usion processes of user innovations across plants. While both innovations were �rst

2Lerner and Tirole (2002) attempt to explain this behavior in the context of open source software development.
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deployed in the same year, i.e., 1962, the di¤usion paths diverged thereafter; the MHL proliferated fast and

achieved full penetration across �rms in 1965, when the OG system was adopted by half the existing plants.

The di¤erent di¤usion rates observed in the table allow us to separately identify the e¤ects of the respective

user innovations on industry growth and productivity, as discussed in Section 3.

The innovations developed by Yawata received considerable attention from foreign steelmakers as well.

Although Yawata had licensed its innovations for royalty fees, the inventions were highly appreciated abroad.

For example, beginning with West Germany in 1963, the OG system was adopted by more than 60 percent of

the foreign steel manufacturers by the mid-1970s. Eventually, the royalties obtained from this technology by

the Japanese proved to be more than the amount they had paid the Austrian company to obtain license rights

for the BOF. In the next section, we quantitatively assess the extent to which user innovations contributed

to the Japanese steel market in the 1950s and 1960s.

3 Economic Impacts of the User Innovations

This section, which comprises two subsections, analyzes the economic e¤ects of user innovations on industry

growth. Section 3.1 presents the method used to estimate the productivity of user innovations in the steel

re�ning process, namely the MHL and OG systems. To achieve this, we require estimates of the production

function that describes the steel re�ning process of the BOF. The estimation results, also presented in this

section, indicate that user innovations accounted for approximately 40 percent of the TFP increase in the

BOF process. Using the obtained estimates, Section 3.2 examines the steel output considering a hypothetical

situation in which Japanese steel companies do not adopt the MHL and OG systems. We �nd that user

innovations indeed contributed to the expanded steel production, and without user innovations, the output

would have annually increased by only 33 percent, which is considerably below the actual output growth of

40 percent. However, the innovations did not lead to uniform bene�ts for all Japanese companies. In fact,

our simulation result indicates that the pro�ts earned by the innovating company, Yawata, were more than

10 percent higher than those earned by other companies.

3.1 Econometric Analysis of Production Function

3.1.1 Estimation Model

In this subsection, we empirically analyze the productivity of user innovations, namely, the MHL and OG

systems, in steel production. For this, we �rst estimate the production function that describes the BOF

steel re�ning process. The BOF produces crude steel of homogenous quality, regardless of whether the MHL

or the OG system is installed. Our econometric model of the production function assumes the following

Cobb-Douglas form (all variables are in logarithmic form).

yi;t = �i;t + �lli;t + �xxi;t + �kki;t + �zzi;t + ui;t (1)

where yi;t denotes the annual output (in tons) at plant i in year t. The production function comprises several

input variables. The electricity and labor inputs are denoted respectively by li;t and xi;t. The capacity size is

indicated by ki;t, and the number of years of the BOF use is denoted by zi;t. The latter variable captures two
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aspects of capital utilization. On one hand, it re�ects the experience level, i.e., the extent to which extensive

use of a particular furnace type leads to more e¢ cient production. On the other hand, the variable indicates

the degree of capital depreciation, as furnace productivity deteriorates with age. The estimated coe¢ cient,

�i;t, indicates which of the two e¤ects is more dominant in our application. The production function (1)

implicitly assumes constant returns to scale across multiple BOF�s owned by a plant. Our estimation results

discussed in the next subsection relax this assumption and allow for discontinuity in the variables denoting

capacity size and experience.

Since the MHL and OG systems contributed to improving yields and saving energy costs, we include the

e¤ect of the user innovations in the constant term, �i;t, as follows.

�i;t = 
0 + 
MHL �MHLi;t + 
OG �OGi;t (2)

in which MHLi;t (or OGi;t) indicates the extent to which the MHL (or OG system) was instituted at plant

i in year t, as presented in Table 1. Thus, either indicator takes the value in the range between 0 (when none

of the BOF furnaces in plant i had adopted the corresponding user innovation) and 1 (when all furnaces at

plant i adopted it).3 The Greek letters, �l; �x; �k; �z; 
0; 
MHL;and 
OG represent the parameters to be

estimated.

Note that yi;t is measured in terms of output quantity and not value added. Many studies use value

added, de�ated by a common industry de�ator, under the implicit assumption that the product market is

perfectly competitive. If this assumption is violated and the dispersion in output prices is observed, it is

di¢ cult to obtain unbiased estimates of production-function parameters because the de�ated sales di¤er

from the actual output (Klette and Griliches, 1996).

Apart from the explanatory variables mentioned in (1) and (2), an important in�uence on steel production

is the plant-level e¢ ciency in production management and improvement in furnace technology, which are

not directly related with the user innovations being studied herein. For example, Lynn (1982; 34) illustrates

the prolonged lives of refractories through the bricks used to line the BOF�s. Such unmeasured determinants

are represented by ui;t. The presence of this term may create endogeneity in input and technology choices.

Endogeneity in input choice arises when producers adjust the amount of inputs (the amounts of labor and

electricity in our application) according to their e¢ ciency di¤erences in ui;t. A method that fails to account

for such correlation would generate biased estimates. Our response to the endogeneity problem is to use

plant-, and year-speci�c components in the estimation � ui;t = �i+�t+"i;t, where "i;t denotes a mean-zero

error. The plant �xed component (�i) deals with e¢ ciency di¤erences among plants that do not change

over time. The inclusion of �t serves to control for industry-level supply shocks. Note that year-speci�c

components may attenuate e¤ects of user innovations. Even though we use the panel data, the impact of

innovations may be compounded by �t; this is because the innovations penetrated rapidly, as indicated in

Table 1. Thus, we should consider that the estimated coe¢ cients may understate the actual impacts of the

user innovations.
3We assume that MHLi;t (or OGi;t) takes a value equal to the proportion of the furnaces equipped with the MHL (or

the OG) systems in plant i in year t. Our estimation results discussed in this section are quantitatively unaltered under

the alternative assumption that the variable takes the value of 0.5, when some but not all furnaces in plant i adopted the

corresponding user innovation.
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It may appear to be restrictive to assume that the plant �xed component is constant over time. However,

this assumption appears reasonable with respect to our data and is consistent with the observation that

the order of the plant-level production share remained constant during the sample period. Spearman�s rank

correlation coe¢ cient in terms of the BOF production share is 0.82 at the 99 percent con�dence level between

1957 and 1968; moreover, the deviation from perfect correlation is entirely due to plant entry. 4 ,5

Endogeneity (or selection) in choice of technology choice arises when a �rm�s decision with regard to

the adaptation of user innovations is not random but correlated to the productivity, ui;t. The severity of

the selection bias depends on the magnitude of the productivity di¤erence between plants that adopt user

innovations and those that do not. In theory, two hypotheses exist with regard to the relationship between

plant productivity and technology adoption. One is that the more productive plants are likelier to adopt a

new technology. For example, Caselli (1999) argues that skilled biased technology tends to be adopted by

plants with high human capital levels, because skill and technology are complementary under strong learning-

by-doing conditions. Since plants with more skilled workers are more productive, this hypothesis implies

that productive plants are more likely to adopt user innovations.6 The alternative hypothesis is related to

technology leapfrogging. For example, Jovanovic and Nyarko (1996) �nd an �overtaking� equilibrium in

cases where less productive plants switch to a better technology more often than do more productive plants.

In their model, productive plants are experienced with regard to old and familiar technologies, while the less

productive plants are less attached to technologies. This extensive experience prevents productive plants

from adopting a new technology, while less productive plants show a willingness to adopt it. This hypothesis

suggests that less productive plants are likelier to adopt user innovations. The direction and severity of the

selection bias is an empirical issue. Our speci�cation corrects for this selectivity of furnace technology using

the instrumental variable technique.

3.1.2 Estimation Results

Table 2 presents four estimation results, based on methods without (column 2-A; hereafter �no-FE�) and

with the plant �xed e¤ects (column 2-B, 2-C, and 2-D; hereafter �FE�) discussed earlier in this section.

Speci�cation (2-B) estimates (1) under the assumption of constant returns to scale across multiple BOF�s

owned by a plant, while (2-D) allows for di¤erent coe¢ cients of capital depending on the number of furnaces.

Speci�cation (2-C) responds to the concern on self-selection regarding the adoption of user innovations.

The upper part of the table presents estimates of the regression coe¢ cients. Our inference is based on

heteroskedasticity-robust standard errors. The measure of adjusted R2 indicates that the model �ts the data

moderately well, accounting for more than 60 percent of the variation in steel output.

4The stability of market share is often observed in other industries in Japan. See Sutton (2005) for details.
5An alternative method to control for unobserved productivity is to create a proxy for uit by introducing an input demand

equation from outside the production-function framework. A previous version of Nakamura and Ohashi (2006) attempted to

apply this method and reports that the infrequency of investment fails to use the Olley and Pakes (1996) method and that the

use of material input (pig iron and scrap in our case), as per the idea adopted from Levinsohn and Petrin (2003), generates

unreasonable productivity estimates. The Levinsohn-Petrin approach has also been recently criticized by Ackerberg, Caves,

and Frazer (2005). Based on these �ndings in the previous version, this paper does not employ these methods to control for

unobserved productivity.
6Our data set is unsuitable for testing a hypothesis related to wage premium and human capital. The purpose of the

discussion in this paper is to illustrate the importance of controlling for self-selection in the choice of technology.
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Several coe¢ cients in (2-A) are precisely estimated; however, we are concerned about endogeneity in input

choice. In particular, it is plausible that a more productive plant may be able to make more e¢ cient use of

intermediate inputs (labor and electricity) to produce a given amount of steel. This leads to a correlation

between the intermediate inputs and the unobserved productivity error. The FE estimator accounts for the

bias. The estimates show that the mean values of the electricity and labor coe¢ cients are higher than those

in (2-A); however, the di¤erence is statistically insigni�cant.

The coe¢ cients of capacity size and years of BOF use are precisely estimated in (2-B). The capacity-size

coe¢ cient is less than one, indicating the existence of decreasing returns to scale. The elasticity of steel

output with respect to the plant-level capacity size is estimated on average as 0.38. We further examine the

capacity-size variable in (2-D). As discussed in the previous section, the variable representing the number of

years for which a plant had used the BOF captures the two e¤ects. The estimated coe¢ cient implies that

the experience e¤ect dominates the depreciation e¤ect. If a plant uses the BOF for a duration that is greater

than the mean value by one year, the steel production would increase by 5 percent.

A plant�s decision regarding the adoption of the MHL and OG systems would be endogenous if there were a

persistent relationship between plant productivity and the adoption timings of the innovations. This concern

would make the variables of user innovations to correlate with the error in the equation (1). Speci�cation

(2-C) attempts to correct for the endogeneity in the variables of the user innovations included in (1) and

(2) by using a two-stage least squared (2SLS) method. Note that the endogenous variables, MHLi;t and

OGi;t, are continuous, thereby indicating the extent to which the respective innovations penetrated at the

plant level. We assume that the penetration of each user innovation depends on the following three variables,

along with the exogenous variables included in (1), and we treat them as the instruments. First, plant age,

representing the number of years for which a particular plant had operated until time t. An older plant may

�nd it more di¢ cult to adopt the user innovations, because the layout of the plant may not be suitable for

the installation of user innovation systems. This is probably logical in that the old plant, when built, did

not anticipate the introduction of the MHL and OG systems. Note that this variable di¤ers from zi;t, i.e.,

years of BOF operation, because many plants existed prior to the introduction of the BOF. The other two

instruments represent the average penetration rates of the respective user innovations for the other plants

owned by the same �rm. It is possible that experience with user innovations may have spilled over not

only within a plant but also between plants within a �rm. These two instruments may be considered as

appropriate in the presence of a within-�rm experience spillover.

It is known that the 2SLS method can produce severely biased estimates if the instruments are weak.

We thus check the explanatory power of instruments, conditional on the included exogenous variables in

the �rst stage of the 2SLS method. Table 2 reports the values of the F-statistics for corresponding user

innovations. We �nd that the instruments described above are not weak at the 99 percent con�dence level of

F-statistics. The estimated coe¢ cients in (2-C) are obtained by regressing the dependent variable onto the

exogenous and �tted values of endogenous variables. The results reported in (2-C) indicate that the model

does not �t the data well, and some estimates are found to be of little statistical signi�cance. The estimated

coe¢ cients, including those of the user-innovation variables, are statistically indi¤erent from the estimates

reported in (2-B). To check for the endogeneity of the user-innovation variables, we compare the OLS and

2SLS estimates by the Hausman test. The results shown in the table indicate that the test does not reject
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the adequacy of the OLS estimates.

Note that the coe¢ cients of the user-innovation variables are estimated to be statistically insigni�cant.

Based on the discussion in the previous section, we conjecture that this is due to the rapid penetration of the

innovations. The e¤ect of user innovations, particularly the MHL, is likely to be compounded by year-speci�c

e¤ects, �t, included in (1). Indeed, the �rst-stage regression performed in (2-C) shows that it is only the year

dummy variables indicating the period from 1964 to 1968 that explain the di¤usion of the MHL. Combining

with the Hausman-test result, we conclude that the endogeneity in the adoption of user innovations is not

severe, because such endogenous decisions are primarily explained by the year-speci�c components, which

are already included in (2-B).

Finally, the speci�cations discussed so far do not explicitly consider discontinuity in capacity size and

assume constant returns to scale across multiple furnaces owned by a plant that implemented the same

technology. All plants possessed multiple BOF�s, and the capacity size, in particular, changed only with

the number of furnaces operated by a plant. In order to test whether shifting from n- to (n+1)- furnace

operation (where n is an integer greater than zero) changes the capital elasticity of productivity, we estimate

di¤erent coe¢ cients of capital by the number of furnaces. Due to the small sample size, we employ only

the following three cases of plant operation; zero-furnace operations, one- or two-furnace operations, and

operations with three or more furnaces. Thus, the model is speci�ed as follows.

yi;t = �i;t + �lli;t + �xxi;t + ki;t�k1 � 1 (0 < Ni;t � 2) + ki;t�k2 � 1 (2 < Ni;t) + �zzi;t + ui;t (3)

where Ni;t denotes the number of furnaces for plant i in year t, and 1 (�) is an indicator equal to one
if the expression within parenthesis is true. Hence, �k1 (or �k2) measures the di¤erences in the capital

elasticities between zero-furnace operations and one- or two-furnace (or three- or more furnace) operations.

The other variables and parameters have already been introduced in the previous section. The estimation

result is reported in (2-D). The speci�cation uses the �xed-e¤ect method. As observed from (2-D), decreasing

returns to scale in capital are observed, and the estimated coe¢ cients in the capacity-size variables are neither

economically nor statistically di¤erent from those reported in (2-B).

The estimates in the coe¢ cients of 
MHL and 
OG indicate that both user innovations improved the

productivity of steelmaking. The coe¢ cient of the OG-system variable reported in (2-B) is estimated to

be signi�cant both statistically and economically. For example, the estimates imply that Yawata, when

it �rst installed the OG system in 1962, achieved a productivity increase of 11.8 percent. 7 Moreover,

the estimated MHL coe¢ cient reported in (2-B) indicates that the innovation, when fully penetrated across

plants, enhanced the productivity by 6.4 percent. The estimated impact of the MHL appears to be consistent

with the information obtained from the trade journal. According to the Iron and Steel Institute of Japan

(1982: 169), the MHL, when introduced in Yawata, boosted yield by 0.8 to 1.7 percent and shortened the

hours required for steel re�ning by a maximum of 5 percent (i.e., a reduction of about two minutes in the

re�ning process of approximately 45 minutes). The sum of these productivity increases, as documented in

the trade journal, turns out to be similar in magnitude to that inferred from our MHL estimate.

We analyze the extent to which user innovations improved the aggregated TFP of the steel industry.

7Yawata installed the OG system for two BOF�s out of a total of seven furnaces; thus OGi;1962 takes the value of 0.286.
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We use the estimates obtained from (2-B). Our productivity measure comprises the contributions of user

innovations (represented by the second and third terms in the RHS of (2), and disembodied technical progress

(represented by ui;t). Industry productivity is calculated annually as the share-weighted average of furnace

and plant productivity. Thus, user innovations are considered to improve industry productivity by the

corresponding share-weighted estimates of 
MHL �MHLi;t + 
OG �OGi;t. Figure 2 illustrates that the user
innovations play an essential role in the growth of industry productivity. The estimated contribution of user

innovations toward industry productivity is denoted by the dotted line. This shows that the adoption of the

MHL and OG systems accounts for more than 30 percent of industry productivity. The estimated industry

TFP shown in the �gure indicates a high correlation with steel output, wherein the correlation coe¢ cient

is 0.80. This �nding corroborates with the observation made in Nakamura and Ohashi (2008), in that the

adoption of BOF technology signi�cantly promoted the growth of the Japanese steel industry in the 1950s

and 1960s.

3.2 Simulation Analysis

In the previous section, our discussion was based on the production-function estimate that user innovations

improved the productivity of steelmaking. In this section, we measure the impact of user innovations on

the growth in industry output by examining the implications on the steel market if Japanese plants had not

installed the innovations and had continued with their BOF re�ning operation.

We conduct the following simulation exercise to determine a plant�s output level, while excluding long-run

strategies such as the level of production capacity as constant.8 We assume no adoption of user innovations

in the period from 1962 to 1968. This assumption is equivalent to both OGi;t and MHLi;t that take the

value of zero, and thus �i;t in (2) equals 
0. We then calculate the new plant output for each year. Since the

introduction of user innovations made no changes in the technical features of the BOF steel re�ning process,

we retain the nature of the production function (1) described in the previous section.

We assume that each plant chooses an amount of factor inputs that maximizes its own short-run pro�t

in each year t. 9 The production function (1) contains two factor inputs, namely, labor and electricity. We

assume that labor input cannot be chosen by plants in the short-run, because most Japanese companies,

including steel producers, vigorously adopted a permanent employment system. Indeed, turnover and layo¤s

were rarely observed during the study period. We thus consider electricity as the choice variable in the plant�s

optimization problem. The markets, both for steel output and factor inputs, are assumed to be competitive

with regard to the steel price pt and the electricity price !t.10 Hence, plant i�s pro�t-maximization problem

in year t is given by.

8Our simulation exercises do not allow for plant entry and exit. It is probably unreasonable to consider that the absence of

user innovations triggers a plant�s entry, which is a decision that involves large sunk costs.
9Alternatively, we could assume that the �rm maximizes its pro�ts by solving its allocation problem across plants. Although

this alternative approach may be more realistic, modeling the multi-plant feature requires complex computational issues, which

are beyond the scope of this paper.
10The steel production process converts pig iron and scrap into crude steel. Thus, our price measure pit is the price of crude

steel, netted out of the sum of the pig iron and scrap prices.
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max
Xi;t

ptYi;t � !tXi;t � FCi;t (4)

s:t: (1)

where Yi;t and Xi;t denote the exponential transformation of yi;t and xi;t used in (1), and FCi;t denotes

the short-run �xed cost, including capital and labor costs for plant i in year t. To assess the counterfactual

scenario, we use the estimates from (2-B) in Table 2, replacing the estimated coe¢ cients of OGi;t andMHLi;t

in (2) with zeros, and simulate the counterfactual plant output by solving the above optimization problem

(4). The obtained simulated output and input for plant i is denoted by Y 0i;t and X
0
i;t. Following the same

procedure, we simulate the model (4) with the actual values of OGi;t and MHLi;t, and obtain the predicted

values of the steel output for plant i, i.e., Y 1i;t. We also denote the corresponding input by X
1
i;t. The industry

outputs are calculated by summing over the obtained outputs across all plants as follows: Y 0t �
P

i Y
0
i;t and

Y 1t �
P

i Y
1
i;t. The results are presented in Figure 3. In order to facilitate comparisons among the actual

output and the two output estimates, we normalize them to be 100 in the year of 1961. Note that user

innovations were introduced in the subsequent year. The comparison between Yi;t and Y 1i;t indicates that the

model prediction understates the actual output level; however, the annual growth rates of the two output

measures are at a similar level of approximately 40 percent.

Figure 3 shows a signi�cant contribution of user innovations to the growth of Japanese steel output.

To obtain a conservative estimate, we compare the values of the simulated values of Y 0t and Y 1t . The

di¤erence between the two series diverged as user innovations penetrated across plants. The comparison

of the estimates shows that user innovations increased the level of steel output by 23.2 percent, and the

rate of output growth by 5 percent. When the innovations were fully distributed in 1968, the innovations

enhanced the steel output by more than 28 percent. The �gure illustrates that user innovations accounted

for approximately a quarter of the steel output in the 1960s.

The adoption of user innovations must have been pro�table because the plants voluntarily installed

the MHL and OG systems. It would be interesting to examine if the bene�ts from plants adopting user

innovations were equally obtained by �rms adopting user innovations or if they were concentrated to a

particular plant, especially a lead-user plant. While case studies have been conducted in the literature,

including von Hippel (1986), to conclude that the latter scenario is more likely to occur, little empirical

research has been available on the extent to which the innovation bene�ts are distributed across plants. To

investigate this issue, we use the model (4) and simulate the short-run pro�t for each plant. We maintain

the assumption of perfect competition for both the product and factor markets of steel, and assume that the

values of the �xed costs, FCi;t, are unaltered, regardless of whether or not plants installed the MHL and the

OG systems. The pro�t accrued to plant i that adopted the user innovations is simulated as follows.

�1i;t ��0i;t �
�
ptY

1
i;t � !tX1

i;t � FCi;t
�
�
�
ptY

0
i;t � !tX0

i;t � FCi;t
�

= pt
�
Y 1i;t � Y 0i;t

�
� !t

�
X1
i;t �X0

i;t

�
;

where �1i;t (or �
0
i;t) represents plant i�s simulated pro�t in year t under the assumption that both OGi;t

and MHLi;t take the actual values (or take the values of zeros). Thus, the di¤erence between �1i;t and
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�0i;t indicates the additional monetary bene�ts obtained from a plant�s adoption of user innovations. The

simulation results presented in Table 3 show that the inventing company, Yawata, was the largest bene�ciary

of user innovations; in our data set, Yawata�s bene�t from the innovations was about 30 percent larger

than that of the second largest bene�ciary, Fuji, and eighteen times larger than that of the company that

bene�tted the least. This �nding appears to indicate that Yawata, with the largest BOF production in the

Japanese steel market, was most motivated to create the MHL and OG systems. The results from our ex-post

simulation exercise analyzed in this section are consistent with the hypothesis proposed in von Hippel (1986)

that Yawata �ts the lead-user role in the creation of the MHL and OG system.

4 Conclusion

New technologies often appear in a rough form. A long process of improvements is usually required in order

for such technologies to successfully prevail in the economy. This process of improvements occurs on the

sides of both producers as well as users. In this paper, we focused on the role of users in technological

improvements. It is anticipated, especially in the area of computer software, that users are playing an

increasingly important role in such innovative activities. Moreover, there has been scarce empirical research

to identify and assess the importance of user innovations.

Using the unique example of the Japanese steel market, this paper empirically examined the economic

signi�cance of user innovations. The paper investigated two innovations that were created in Japan, namely,

the MHL and OG systems. Both innovations resolved technical problems inherent in the use of BOF

steel re�ning technology and improved its performance. The distinctive feature of the innovations is that

the MHL and OG systems were invented by a user and not by a manufacturer of the BOF. This paper

examined the extent to which user innovations a¤ected industry output and productivity. The estimates of

the production function indicate that the innovations accounted for approximately 40 percent of the steel

making productivity. The simulation results show that the steel output in Japan would have lowered by

20 percent without user innovations. The paper also illustrates that the bene�ts of user innovations were

concentrated to the innovating company, Yawata. This paper subscribes to the view stated in trade journals

and argues that user innovations in the Japanese steel re�ning process in the 1960s are consistent with the

�lead-user�hypothesis proposed in von Hippel (1986). This paper corroborates that Yawata bene�tted most

from user innovations and states that Yawata freely disclosed pertinent information concerning the technical

details and the performance of their innovations to their domestic competitors.

Although it focused on one speci�c example of steel re�ning technology, this paper quantitatively iden-

ti�ed the fact that user innovations contributed signi�cantly to industry growth and presumably to the

economy. It is, however, important to note that the paper�s analysis is ex-post; that is, we considered suc-

cessful user innovations with the bene�t of retrospection. Although it is extremely di¢ cult to collect data,

one avenue for future empirical research on user innovations is to choose examples, preferably drawn from a

random sample based on ex-ante perspective. This will enable the study of not only successful innovations

but also failed or ine¤ectual innovations.
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A Data Appendix

Our data set comprises annual plant-level data describing 19 plants and 8 Japanese steel �rms for the period

1957 � 1968. The output and input data (except for labor and physical capital, as described below) were

obtained from the Japan Steel Federation (1955 �1970). The data cover approximately 95 percent of the

total steel production throughout the study period. We focused on crude steel as the output. With regard

to the input, we collected data on the amount of electricity. Over 90 percent of the plants covered in the

data operated more than one furnace in a given year.

Data concerning labor input were constructed from the following two data sets: the number of workers at

the plant level (obtained from the Japan Steel Federation, 1955 �1970) and the actual work hours averaged

over workers at the �rm level (obtained from the Tekko Shimbun Co, 1955 �1970). Data concerning the

number of workers were not disaggregated by furnace, unlike the other input data obtained from the same

source. This construction of the labor data is due to the fact that plant workers often operated both

types of furnaces. The labor input used for the estimation is expressed in terms of total man hours, which

is constructed from the number of plant-level workers multiplied by the actual work hours averaged over

workers at the �rm level. Data pertaining to furnace capacity by plant was obtained from companies�

semiannual �nancial reports, which identify all furnace capacities for the 19 plants covered in our data. The

data recorded the capacity at the end of year t, and an investment was made only when a new furnace was

built.
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TABLE 1
Diffusions of the MHL and OG Systems

Classified by Firm, Plant, and Furnace, 1957 - 1968

Number of BOF Firms Number of BOF Plants
total w/ MHL w/ OG total w/ MHL w/ OG total w/ MHL w/ OG

( % ) ( % ) ( % ) ( % ) ( % ) ( % ) (%)

1957 1 0 0 1 0 0 2 0 0 100.0
1958 2 0 0 2 0 0 4 0 0 51.2
1959 2 0 0 2 0 0 6 0 0 59.9
1960 4 0 0 5 0 0 13 0 0 59.8
1961 5 0 0 8 0 0 19 0 0 43.8
1962 6 50 17 9 33 11 25 24 8 34.7
1963 6 83 33 11 45 18 29 52 14 30.2
1964 7 100 57 13 92 31 35 91 23 27.9
1965 8 100 63 16 100 44 42 100 33 24.1
1966 8 100 63 17 100 41 47 100 32 24.0
1967 8 100 63 18 100 44 55 100 33 23.7
1968 8 100 63 19 100 47 59 100 34 23.1

Number of BOF Furnaces Steel made out of
BOF in Japan

Yawata's Share in



TABLE 2
Estimates from Production Function

no-FE FE FE FE with 
 with 2SLS Number of Furnaces

( 2-A ) ( 2-B ) ( 2-C ) ( 2-D )
Est Std Err Est Std Err Est Std Err Est Std Err

labor 0.124 0.071 c 0.264 0.089 a 0.361 0.141 b 0.289 0.094 a
electricity -0.034 0.039 0.139 0.041 a 0.099 0.116 0.131 0.042 a
capacity size 0.891 0.047 a 0.382 0.066 a 0.387 0.108 a -
capacity size (#furnaces≦2) - - - 0.440 0.093 a
capacity size (#furnaces≧3) - - - 0.429 0.084 a
Years of BOF use 0.198 0.057 a 0.211 0.061 a 0.200 0.065 a 0.216 0.061 a
OG -0.225 0.086 b 0.413 0.168 b 0.950 0.825 0.383 0.172 b
MHL 0.011 0.151 0.064 0.078 0.072 0.372 0.042 0.082

Plant Dummies N Y Y Y
Selection on the User Innovations N N Y N
Adjusted R-squared 0.90 0.79 0.68 0.80
1st Stage F Stats for OG system - - 3.00a -
1st Stage F Stats for MHL - - 15.21a -
Hausman Statistics (D.F.) - - 1.76  (2) -

Number of Observations=104
a   Significance at the 99-percent confidence level
b   Significance at the 95-percent confidence level
c   Significance at the 90-percent confidence level

Note:   The year dummy variables are used in the estimation, but not reported in the table.
  Specification (2-C) employs, as the set of instrumental variables, the number of OG
 systems installed in the other plants owned by the same compnay and plant age.



Yawata 1875.1
Fuji 1444.6

Sumitomo 1284.5
Nisshin 828.9
NKK 365.8

Kawasaki 306.1
Osaka 158.1
Kobe 100.0

Note:
  The values are obtained by the simulation 
method described in Section 3.
  They are normalized at 100
for the amount of profit yielded to Kobe.

Annual Profits Generated by

TABLE 3

 the Adoption of User Innovations



FIGURE 1
Steel Production in Japan
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FIGURE 2
Industry-level BOF Output, TFP, and

Contribution of User Innovations, 1962 - 1968
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FIGURE 3
Actual and Simulated Outputs:

Contribution of User Innovations
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