政策研ニュース

No. 53 Feb 1993

NISTEP News

科学技術庁科学技術政策研究所
NATIONAL INSTITUTE OF SCIENCE
AND TECHNOLOGY POLICY

巻頭対談—斎藤進六顧問の巻—

【坂内政策研所長】本日は、お忙しいところ、時間を頂き有難うございます。
　まず、科学技術系人材の問題についてお尋ねしたいと思います。理工系学生が銀行や証券会社に就職する傾向は、バブルの崩壊で止まったように見えますが、科学技術系人材の養成・確保は今後とも重要な課題で、科学技術会議でも第20号諮問を受けて検討を開始しています。
【斎藤顧問】人材については、日本は創造性が弱いとよく言われる。これは大学の研究室に「50年間追求しているといった長期のテーマ」が殆どないので問題だと思います。ヨーロッパの大学では50年も100年も続いているといった根元的なテーマがある。例えば、不確定性原理についてアインシュタインが疑問を出し、それは根本的には解決していません。光の波動が量子化するか否かの問題も未だ再実験を繰り返しているグループがあります。日本は教えられたことを殆ど疑いを持たず受け入れてしまいますが、考えた側は自分の提起した問題に常に疑問を持ち続けています。重要なファーストコンセプトは根元的な疑問を持ち続ける中から生まれるのです。一方、ファ

目次[Contents]
I. 最近の動き Current Topics ------------------------------ 4
II. レポート紹介 Highlight of the New Report ------------------ 6
自然科学研究課題を増強する条件
Ⅲ. その他 Other Topics ---------------------------------- 12
ニーストコンセプトが出た後は、例えば転位論（金属）にしても、最初に始めた外国の読中は、「あとは日本人が細かくやってくれるよう」と言って、より根元的な疑問に移っていっている。それでも自分の名前が論文中にいつでもサイティング（引用）されることになり、何をしなくても日本人が偉くしてくれるわけですね。（笑）。端的に言えば、教えた方は自分で次の変革に踏み込めるが、教わった方はそれに縛られるという一般論が成り立っているわけです。日本は、短期的に答の出そうなテーマには熱心に取り組むが、心に響いて離れないような根元的な疑問に基づくテーマを持っていないために、ファーストコンセプトが出せない。日本の大学全体の問題です。

大学院大学を目指した改革が進められていますが、大勢の大学院の学生に2年なり3年なしで学位を取らせることが教授のデューティーになると、短期的な研究テーマへの傾斜がかえって進むのではないかと、心配しています。

【坂内】先般、当研究所が取りまとめた「第5回技術予測調査」でも、実現時期の近い課題では日本優位だが、実現に時間がかかる課題は海外優位といった傾向がでています。

【斎藤】高校での教え方にも問題がある。例えば、原子核を教えるのに、陽子と中性子をしっかりと閉じこめるような実験の核を書いたのではなく、核を結び付けている力は一体何なんだろう」という疑問は生じない。せめて点線の核の線にする必要がある。教える人が頭の中で問題を解決してしまっているんですね。安易な解答を教えるより疑問を育てる教え方が重要なのでそれが欠けている。生徒の持っている疑問をより大きく、より正しい疑問の体系へと結び付ける教育が必要です。問題が与えられると手に解くが、問題を創ることが苦手なんですね。

【坂内】明治以来の歴史的経緯も関係があるのでしょうか。

【斎藤】明治維新のとき、日本は欧米に比べ非常に遅れていて、富国強兵策のもとで、理学よりも工学に力を入れた。これはこれまで正しい選択だったが、これがそのままずっと続いていないのが問題です。切り替えが必要でしょうか。

【坂内】切り替えの意味を含めて、科学技術庁では、センター・オブ・エクセレンス（COE）の育成を打ち出しました。科学技術振興調整費を活用して、COEたることを目指す研究機関を選定して重点投資しようというものです。

【斎藤】COEには、特に若力と研究者の流行性が重要だと思います。神奈川科学技術アカデミーでは、研究室の研究期限を5年に限った流動システムでプロジェクトを運営しており、研究者は45才を上限としています。平均年齢は30代です。時々、せっかく育った人材や研究体制をなんで5年で解散するんですかと聞かれますが、人材は養成した所で使うのでなく、養成した人を外に出して使えるようにするのが重要だと、養成した人材を自分の所にとっておいては駄目だと答えています。一番惜しいと思う人から外に出すのが大切なんですね。日本は労働力や人材の流行性がないのが非常に問題だと思います。

また、45才上限とは別に、立派な成果を上げた85才までのシニア研究者を、しかるべき処遇で顧問として招き、研究フィロソフィーを若い人に伝えて貰えるような制度も考えています。立派
な成果を上げた人をきちんと処遇するのは、若い人を元気付かせる上でも極めて重要なことです。

【坂内】神奈川県は科学技術先進県ですが、地域科学技術の振興についてはどのようにお考えですか。他の自治体に神奈川県の話をすると、なかなかそのまでは、という声を聞きます。
【斎藤】私は、地域に対しては、わりと突き放した考えです。つまり、アカデミーでは、いろんな段階のテーマをある程度まで解決してどんどん公表していく。それをどう受けとめるかは、地域の力だと思います。我々としては成果の出し方に留意しています。即ち、プロジェクト終了時点で、プロジェクト自身の成功、失敗をジャッジすることはしない。プロジェクトの中で出てきた良い考え、技術、理論などを、研究室長の責任ではなく、外部の専門家によって観から引き出すという発想で評価します。このための委員会を設けています。
一方、政府の立場で考えて頂きたいのは、地域の科学技術を県を単位として考える考え方。おそらく変わるべきだということです。もっと広域に数県をブロックとして考えるうちに、だんだんと地域の科学技術振興、さらには行政一般の広域化にも明るい見通しが出てくると思います。
【坂内】重視ご意見を有り難うございます。

ところで、未踏科学技術協会の活動はいかがですか。
【斎藤】未踏としては、超電導、傾斜機能材料、インタリジェント材料など、新材料を対象とした活動をやってきていますが、今度「エコマテリアル」に取り組もうとしています。エコロジーの問題になってくるので、大学や企業だけでなく地方自治体などの行政部門にも入って頂かないといけないと思っています。

【坂内】今度、先生、アメリカのほうで材料関係の質を受賞なさるとお聞きいたしましたが。
【斎藤】アメリカンセラミック学会の名誉終身会員に選ばれまして、4月に授与式に行くことになっています。年間に2人だけで、ひとりは同学会の会長経験者で、会長をやめてから何年か数年の年月がおかれています。もう一人が世界中から選ばれます。日本人では初めてだそうで、大変名誉に思います。ただ、セラミックスの研究は止めてからもう10年以上になりますから、笑。
【坂内】おめでとうございます。先生は、相変わらずお忙しく活躍されていて、仕事が趣味のようなものと思いますが、引き続きよろしくご指導下さるようお願いします。本日は有り難うございました。

（メモ）斎藤 進六（さいとう しんろく）
（財）神奈川科学技術アカデミー理事長
（財）未踏科学技術協会理事長
東京工業大学名誉教授
（東京工業大学学長、長岡技術科学大学学長を歴任、現西東京科学大学学長）
○このたび当科学技術政策研究所総務研究官に柴田治呂氏（前原子力局動力炉開発課長）が就任致しました。

総務研究官就任挨拶

1月18日付をもって、総務研究官に就任いたしました柴田治呂でございます。
これまで3年程、原子力分野において、保障措置、動力炉開発などに携わり、日常的な業務に追われておりましたが、このたび、うっと変わって科学技術政策を研究する立場に立つことになりました。科学技術庁は、本来科学技術政策を企画、立案するところでありますが、その基盤を支える調査、研究は極めて重要なものであります。科学技術政策は、現実の世の中の動向を正確にとらえて初めて効果的なものでありましょうから、科学技術庁の職員としては、一度、このような政策研究を行ってそれに熟知しておく事が、是非必要ではないかと思われます。その意味で、なるべく多くの本庁の職員が政策研の研究の企画、実施に参加できるような機会ができれば、と思っております。

私は、以前、総合研究開発機構（NIRA）において、科学技術分野の政策研究を担当しておりました。当時、現在の時代をリードしているのは、コンピューター、コミュニケーション、半導体を中心とするエレクトロニクスであるとして、これを取り上げ、様々な視点から検討を加えました。そのひとつとして、日本におけるエレクトロニクスの発展過程を追跡することによって、日本がどのようにして、欧米にキャッチ・アップし、世界的な最先端に立つ事になったのか調べてみました。その中で、世界的イノベーションと日本のイノベーションとの比較を行ったり、又、日本のすくれたイノベーションは、いかなる状況のもとに生まれてきたのか、などの分析を行いました。10年以上も前の事でしたのが、それらは、現在、第1研究グループが行っている研究の発想と一致しているように思います。

社会現象は複雑で奇しくすら、そう簡単にその本質をつかむことはできません。私の行った研究も、一面をとらえたものに過ぎません。優れた政策研究も一朝一夕にしてできるものではありませんが、これまでの経験を生かして、各グループの研究の推進にいささかでもお役に立つことができれば幸いと思っております。

I. 最近の動き／Current Topics

○主要来訪者一覧／Foreign Visitors to NISTEP

1/27（水） Dr. Barry Bozeman（シラキュース大学）
Dr. Maria Papadakis（ ）
講演会等／Lectures at NISTEP
1/20（火） 「National Systems of Innovation」
Dr. Richard Nelson（コロンビア大学）
【講演要旨】
世界各国のイノベーションのパターンには、それぞれの特徴がみられるが、これは、各国において科学技術の発展状況や、教育・経済などの社会的条件が異なり、それらが、技術革新過程に、複雑に影響を及ぼすことが一因となっている。
米国の農業、航空、電機、通信などの代表的な技術革新事例について、技術革新における公共政策の役割を、業種ごとに異なる研究開発の特徴をふまえつつ、論じた。さらに、日本の技術革新について、同様な観点から討論を行った。

研究会等／Research Meetings
「第3回地球環境の実用の条件に関する調査研究会」を1月18日に開催し、評価手法及びアンケート調査結果の分析等について検討を行った。

『組織的知の創造をめぐる学際的研究に関する国際ワークショップ』

開催のお知らせ

近年、創造的な研究開発を推進する上で、イノベーションを知識の創造プロセスとして把握するマネジメントが、ますます重要とされております。知識創造を促す組織的環境がいかなるものであるかという課題は、産学官を問わずに研究管理に携わる者の共通の関心事であり、活発な学際的研究のフロンティアとなりつつあります。当研究所では、国内外有識者による最新の研究報告と意見交換を通じて、この分野の将来展望を行うため、この度『組織的知の創造をめぐる学際的研究に関する国際ワークショップ』を開催いたします。

本ワークショップは、野中郁次郎（当研究所総括主任研究官）を中心に、後藤裕一（日本電気研究開発技術本部）、石井裕（NTTヒューマンインタフェース研究所）、A. デューマ（ロンドン・ビジネススクール）、D. フォレイ（エコール・ド・パリ）、F. ヴァレンティン（コペンハーゲン・ビジネススクール）、H. グルプ（フランホーファー研究所）、L. ジョルジュ（マンチェスター大学）、M. ギボンズ（サセックス大学）、M. シュレーグ（MITスローン・スクール）等、国内外の専門家各氏をお招きし、下記の要項で開催します。
※開催日及びプログラム
平成5年3月22日（月）
AM 9:30 受付・登録開始
10:30 開会式
10:50 基調講演
PM 1:30 セッション1「グループウェアとコラボレーション」
3:30 セッション2「研究グループ間における知識創造」
5:30 レセプション
平成5年3月23日（火）
AM10:30 セッション3「暗黙知、メタファー及びイノベーション」
PM 1:30 セッション4「組織戦略と知識創造」
4:00 総括討論
5:00 終了
（同時通訳付き。プログラムは一部変更される場合があります。）

※会場：研究交流センター・国際会議場（茨城県つくば市竹園2-20-5）

皆様お誘い合わせの上ご参加下さいますよう、ご案内申し上げます。
なお参加登録費は無料です。参加ご希望の方は、3月12日までに第1研究グループ
永田（03-3581-2396）まで、ご連絡下さい。

II. レポート紹介／Highlight of the New Report
自然科学系課程博士を増強する条件
Increasing The Number of High Quality Science and Engineering Taught-Course Doctorates in Japan
第1調査研究グループ
西 滉 千 明

昨年11月に、「自然科学系課程博士を増強する条件」（調査研究資料－24 460頁）を作成し
NISTEP News

ました。これは、平成元年12月に作成した「自然科学研究費の研究者量的部門比較」（NISTEP REPORT No.7）の続編にあたります。

以下、その概要を述べますが、ここで博士課程または課程博士というのは、理学系と工学系の博士課程または課程博士をします。

1 調査研究の目的と方法

この調査研究は、日本の科学技術の一層の発展を図るためには、大学院博士課程の研究機能を強化して、民間企業で活用される課程博士数を増加するとともに、その質的向上を図ることが重要であるという観点から、その増強条件を探ることを目的として行ったものです。

そのような目的意識から、課程博士の需給構造をみると、それは、大学教授、大学院学生、民間企業の研究所長などから成立していると考えられます。そこで、1990年秋から1991年秋にかけて、日本の主要7大学の教授38名、外国大学教授1名にインタビューを行いました。また、その大学教授から、大学院修士課程在学生942名（以下、人数は回答数）、博士課程在学生240名の意見を収集していただきました。

民間企業は、資本金、売上高、従業員数の多い順に並べ、業種の均衡を考慮しながら、上位から選んだ66社の協力を得て、その主要民間企業に勤務する修士課程修了者1838名、博士課程修了者510名の意見、38社の人事部門の長の意見、57社の研究所長121名の意見を収集しました。

この調査研究は、約3700名のご協力をおいただきできありがとうございました。

ご協力をいただいた方々に、厚くお礼を申し上げます。

2 調査研究の結果

この調査研究は、次のようない特徴をもっています。

（1）日本と米国において、大学が毎年育成する課程博士数を収集しました。
（2）国立大学教授の年齢構成から、定年退職者補充人数を算出しました。
（3）修士課程修了者と博士課程修了者の実態賃金の業種別比較を行いました。

とりまとめ方法の特徴は、次のとおりです。

（1）アンケート調査票には、予想を越える意見が書き込まれていました。それは、大学院のあり方を議論するときには、またと得難い資料と判断したので、原著のまま収録し、調査研究書に添付しました。

（2）書き込み意見が少数意見であっても、それは、氷山の一角であり、水面下に多数の意見が深まっているとのみなし、極力本文に引用しました。

調査研究の結果は、次のとおりです。

2.1 課程博士の日米比較

- 7 -
(1) 1年間に育成する課程博士数（人口10万人当たりの数、外国人を除く。）は、次の表のとおりです。
博士課程進学状況が過去5年の状況のまま推移すると仮定すれば、日本が現在の米国の人数になるためには、理学系は38年、工学系は17年が必要です。

<table>
<thead>
<tr>
<th></th>
<th>理学系</th>
<th>工学系</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>0.377（19）</td>
<td>0.439（42）</td>
</tr>
<tr>
<td>米国</td>
<td>2.567（100）</td>
<td>1.051（100）</td>
</tr>
</tbody>
</table>

注：）の数値は、米国に対する日本の比率

(2) 1年間に、100人以上の課程博士を育成する大学数は、次の表のとおりです。米国では、カリフォルニア大学バークレー校495名、マサチューセッツ工科大学415名、スタンフォード大学337名、イリノイ大学331名となっています。日本は、東京大学200名、京都大学121名、大阪大学100名となっています。（1986年）

<table>
<thead>
<tr>
<th></th>
<th>理学系</th>
<th>工学系</th>
<th>合 計</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>米国</td>
<td>25</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

これは、日本の博士課程が大学において占める位置が米国よりも格段に小さいこと、学生が博士課程に進学するときの選択範囲が米国よりも遥かに狭いことを示しております。

2.2 大学院博士課程を充実しなければならない理由
大学院博士課程は、次の理由により、充実しなければならないと考えられています。
(1) 大学院博士課程には、課程博士を育成すること、新しい学問を体系化すること、基礎研究を行うことの目的があります。その目的を遂げるために、博士課程の充実が必要と考えられています。
(2) 新しい頭脳をもった学生が博士課程にいることは、教授の研究を刺激します。それは、大学院博士課程の研究を活性化し、推進力となるもので、大学院博士課程を充実し、優れた学生が博士課程に在学している必要があります。

2.3 民間企業で活躍する課程博士を育成しなければならない理由
多くの教授や学生は、大学院博士課程は大学教員を養成するためにあると考えています。しかし、今後は、次の理由により、民間企業でも重用される課程博士が必要であると考えられています。
(1) 今後の民間企業の研究開発は、技術的側面だけではなく、科学的側面を強く意識する必要があると考えられていますが、課程博士が最適な者であること。
(2) 米国で、民間企業で活躍する理学系博士は935名、工学系博士は930名です。しかし、日本では、それぞれ98名、205名に過ぎません。米国との均衡を考えると民間企業でも課程博士が必要であると考えられること。
また、多くの教授、学生、並びに、主要民間企業に就職している修士や課程博士、及び研究所長は、民間企業でも、今後課程博士の採用を増やす必要があると考えていること。
(3) 民間企業で活躍する課程博士を増加しないと、米国の国民一人当たり博士数に追いつかないこと。
(4) 大学教員の産官交流を行うためには、民間企業で活躍する課程博士が存在することが前提となること。

2.4 課程博士と民間企業との間に生じている落差
民間企業では、課程博士が必要であると考えています。しかし、課程博士数の供給は十分であるが、採用したいと考える課程博士は少ないと考えています。
それは、次のような落差が生じているからです。
(1) 生じている落差の実態
課程博士の資質について、次のような落差が生じています。
「民間企業が課程博士に求める資質」≠「課程博士が備えている資質」
具体的には、次のとおりです。
① 学力がトップクラスの学生で進学する者は少ない。
② 民間企業を第一志望とする課程博士が少ない。
③ 研究資源を統合する研究能力が、修士よりも特に優れているとは考えられていない。
④ 研究の本質を掌握する能力、研究手法、基礎的学識の広さ、語学力、科学的実証能力などが、修士よりも特に優れているとは考えられていない。

研究条件について、次のような落差が生じています。
「課程博士が民間企業に求める研究条件」≠「民間企業が課程博士に示す研究条件」
具体的には、次のとおりです。
① 民間企業では、研究の自由度は少ない。
② 課程博士の評価、賃金などは、同期の修士とほぼ変わらないところが多い。

(2) 落差の生じている要因
先に述べた落差は、次の要因により生じていると考えられています。

① 在学中の生活が同じ年代の者の生活よりも格段と劣っていること。
② 修了後の将来展望が暗く、在学中の費用回収の見通しがないこと。
③ 実質的に自由に進学先を選べないこと。
④ 研究室にいわゆる“生え抜き教授”などに起因する前近代性があること
⑤ リサーチフェロー（ポスドク）制度が貧しいこと。
⑥ 論文作成が重視されていること。
⑦ 基礎的な学識及び実証能力を育成するカリキュラム及び風土がないこと
⑧ 教授が博士課程の教育や研究指導に専念できないこと。
⑨ 建物が前近代的でありその中身の近代化が行われていないこと。
⑩ 修士で就職する学生よりも格段に優れていると考えられないこと。
⑪ 限られた研究テーマ以外では、特に優れていると考えられないこと。
⑫ 民間企業に大学以上の学歴によって、賃金額を変える慣行がないこと。

(3) 落差を解消する方法
大学教授並びに民間企業の研究所長などが、落差を解消するために必要と考えていることは次のとおりです。
まず、課程博士の資質を向上することです。そのためには、次のことが必要だと考えられています。

① 在学中の経済的自立条件を整えるとともに、3年以内で学位が取得できるようにする。
② 博士課程修了後の将来を明るくする。
③ 博士課程の進学先を自由に選択できるようにする
④ 建物が中身の近代化を行う。
⑤ 大学教授自体が、民間企業でも重用される理想的な課程博士像を明確にする。その上で、その理想像の育成に向けて、博士課程の履修科目を改訂する。
⑥ 教授の雑用をなくし、教育や研究指導に専念できるようにする。
次に、民間企業が課程博士に示す研究条件を向上することです。しかし、これは、修士よりも優れた課程博士が実際に存在することが前提となります。

2.5 課程博士増強方策の提言
課程博士の育成数を増加し、かつ、その資質の向上を図るためには、次に1に掲げる基本的な考えに基づいて、2に掲げる具体的な増強方策を勇猛をもって実践することが必要であると考えます。

*基本的な考え方
(1) 国は、さまざまな資質の課程博士が尊重される時代が到来していることを十分に認識する。
(2) 国は、(1)の認識に基づいて、多くの国民がそのことを理解できるような方策を講じる。
（3）大学院博士課程では、殺到する進学希望者の中から入学者を厳選し、博士課程が大学教員に限らず、民間企業においても重用される資質を備えるように、教育及び研究指導方法を改めること。
（4）課程博士の資質の改善と民間企業の研究条件とは、どちらか一方を先行させることはできない関係にあるので、両方の改善は、ワンパッケージとして同時に実践する。

・具体的な増強方策
（1）国は、博士課程の重要性を示すために、主要な大学院博士課程に、美しい大きな研究棟を建設し、研究室のスペース、研究設備、研究機器、研究費の充実を図る。主要私立大学にもそれぞれの充実に必要な助成を行う。
また、大学教授と学生との間に、学究面及び人間関係面で、強い信頼の絆を形成する。
① 学びたい大学院、学びたい教授のもとに進学する慣習を定着させる。
② 民間企業にも重用される課程博士を育成するという目的を明確にし、その目的にしたがって、カリキュラムを改善する。
③ 教授が共同研究者及び秘書を採用できるようにし、事務部門の近代化を図る。
④ 大学と民間企業あるいは国公立研究所との人事交流を進める。
（2）博士課程在学者に、同年齢者並の経済的生活を保障する。
① 民間企業が２００億円規模の基金を拠出し、運用益で４５０人の博士課程在学生に、１年間２４０万円を無利子で貸与し、民間企業に就職した場合には返済を免除する。
② 当分の間の経過措置として、学部、修士課程で成績が優秀な学生に、博士課程の学費を免除又は補助する。
③ 合理的で近代的なアシスタント制度を導入する。
④ 日本育英会の奨学金の増額し、貸付制限規定を撤廃する。
⑤ 日本学術振興会の博士課程在学中の特別研究員を増員し、研究奨励金の増額を行う。修士段階で特別研究員の採用内定を行う。
（3）リサーチフェロー制度を拡充する。
国は、既存の特別研究員制度を一層拡充するとともに、民間企業が行う契約任期制研究員制度の導入や拡大に必要な費用の一部を援助する。いろいろな研究機関を異動することが研究者にとって有利となるように、関係機関の処遇制度を改める。
（4）民間企業は、課程博士を正に評価し処遇する。民間企業は、課程博士独自の評価活用制度を取り入れ、賞金は、少なくとも、同期の修士よりも１０％以上高くする。
民間企業は、大学の行う博士課程の充実と課程博士の増員と資質の向上に、積極的に協力する。
III. その他／Other Topics

○成果物の発行案内

* NISTEP REPORT No.26 国家科学技術プログラムの分析（中間報告）

フレームワークの検討と予備的分析ー第1研究グループ（三津間秀彦，広田俊郎）

国家科学技術プログラムの分析の第1報として，本研究における分析フレームワークを検討した上で，国家科学技術プログラムの推進主体である公的研究開発機関の活動実態を分析する一方，国家科学技術プログラム遂行上の主要部門である産・学との相互活動について一事例をあげての予備的分析を試みた。

* 調査研究資料：講演録85 セイコーニュプランにおける技術開発

ー新事業創立の事例と技術開発理念の功罪ー 相澤 進（セイコーニュプラン（株）専務取締役）

○今後の予定（講演会）／Upcoming Events

科学技術庁長官賞受賞者講演会

3/10（水） 「受賞研究活動の経験と教訓—手書き・活字文字認識装置の開発—」

渡辺真一（（株）東芝通信技術研究所長）

/18（火） 「受賞研究活動の経験と教訓—都市ゴミ無破砕式流動床焼却炉の開発—」

石原浩郎（（株）荏原製作所環境プラント事業部副事業部長）

/28（金） 「受賞研究活動の経験と教訓—光ファイバ母材の連続製造技術に関する研究—」

伊澤達夫（日本電信電話（株）光エレクトロニクス研究所長）

○人事往来／Staff

* 1月18日付で髙木喜一郎総務研究官が長官官房審議官（科学技術政策局担当）に転出し，後任には片田治吕（前原子力局動力炉開発課長）が就任しました。

* 1月18日付で船橋英夫企画課長が科学技術振興局研究交流課研究交流官（研究交流センター所長）に転出し，後任には添鷹一（前第1調査研究グループ副研究官）が就任しました。