政策研ニュース NO. 9 MAY.31 1989
N I S T E P N E W S
編集・発行 科学技術庁科学技術政策研究所

NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY POLICY

[Contents] 1. 最近の動き.. P. 1
2. 研究ノート... 2
3. 来所講演概要 .. 10
4. その他.. 12

1. 最近の動き/Current Topics

◎研究会等/Research Meeting
○第4回国際コンファレンス・プログラム企画委員会が5月12日に開催され、明年2月頃、本国際コンファレンスを開催する方向で審議が進められた。
○STSC研究会(Science Technology Society Communication)の第4回会合が5月24日、当研究所において開催され、科学技術と社会の調和の問題をどのような切口で取り上げ、検討を進めていくかにつき活発な議論が行われた。
○「新材料の開発利用とその影響に関する第2回研究会」が5月25日開催され、調査研究事項を「新材料開発と資源との関わりを中心に考察し、問題点を抽出し、分析する。また、その過程で派生する社会との関わりについても併せて考察を加えること」とし、今後具体的な調査研究を進めることとなった。

◎エネルギー・データベースの整備/Facilitation of Energy Date Base
「資源利用構造の中長期的展望と地球環境等に関する調査研究」の一環として、アジアのエネルギー消費構造の実態を把握するため、主として国連(UN)データについて、EDMCエネルギーデータバンクの端末を本研究所内に設置(観日本エネルギー経済研究所・エネルギー計量分析センターと共用契約締結)し、本年3月に利用を開始した。
また、これと合わせOECIEEAのデータについても入力を行い、本研究所におけるエネルギーのデータベース化を進めている。

-1-
主要来訪者一覧 / Foreign Visitors to NISTEP

5/15(月) Dr. Chong Ouk Lee 韓国CSTP所長
5/17(水) Dr. E. K. Scheuch 西独ケルン大学教授
5/19(金) Dr. V. S. Heiskanen フィンランド テンプル大学教授
5/31(水) Mr. R. Smits他 オランダ技術政策研究センター

講演会等 / Lectures at NISTEP

5/10(水)「バイオセンサとバイオテクノロジー」
軽部征夫(東大先端科学技術研究センター教授)
5/17(水)「独におけるPublic Acceptanceと科学技術」
Prof. E. K. Scheuch(独Köln大教授)
5/30(火)「国際社会における技術格差の問題点」
加藤秀俊(放送教育開発センター理事)

2. 研究ノート / Research Note

「地域の研究開発活動」

1. 調査の目的
大都市圏への諸活動の一極集中を是正し、多極分散型国土の形成を図っていくことは、21世紀に向けての重要な政策課題である。

国内における研究開発活動においても地域振興という観点から基礎的検討を加える必要がある。その第一段階として、民間及び大学について地域ごとのマクロな研究開発活動状況を把握することを目的として本調査を実施した。

2. 調査結果の概要
(1)大学の研究開発パワー
文部省が実施している学校基本調査(昭和62年度)及び学校教員統計調査(昭和61年度)の個票を地域別に再集計することによって、地域ごとの大学等高等教育機
間の現状についての基礎データを得た。
分析では、大学学部及び教員、工学部を中心とする理工系学部の大学教員及び学生などについて、その地域分布を検討した。
また、国公私立別や工学部の規模別に見た地域的特徴、各地域における製造業活動と大学の現状の比較等についても検討している。
主な検討結果を以下に示す。
①図1に示すように、大学教員は東京圏、近畿地方にそれぞれ全国計の約3割、2割が集中しており、両地域で合わせて我が国の約半分を占める。
学部別に見ると、両地域では特に人文社会科学系の教員の比率が高いという特徴がある。
②工学部の分布について、「量」の面から見ると、東京圏に全国の約3割、近畿に約2割の学部、教員、学生が分布するなど、大都市圏への集中は否定できない。
しかし、各地域ごとに例えば人口一人あたりの教員数、学生数等を求ると、地域差は小さく、工学部（特に国立大学の）は全国的にある程度平均して分布している。
ただし、視点を各地域に移せば、図2に示すように、その地域内の主要都道府県に研究パワーが集中している傾向が見られ、地域内の都道府県によって相当の格差が見られる。
③研究開発パワーの「質」についての評価はきわめて難しく、安易に論ずるべき問題ではないが、ここでのマクロ的検討によれば、
a 研究開発を担う教員数、大学院生数の多さ、教員一人あたりの学部学生数の少なさなどを考えると、国立大学のパワーが私立大学のそれを上回っていると思われる。
b 東京圏、近畿地方以外でも、北海道、東北、九州地方などの地域には、教員、大学院生とも平均以上に分布している。また、これらの地域ではその地域の拠点となるべき大学に教員、学生が集中していることを考え合わせると、これらの地域には相当の研究開発パワーがあると推測される。
(2) 民間企業の地域別研究開発活動
我が国の民間企業の研究開癗活動については、総務庁統計局の科学技術研究調査報告にまとめられているものの、これは企業単位の調査であるため地域別に研
究開発活動を把握できない。それゆえ、各企業の個々の研究開発部門を対象とした調査を実施した。調査対象機関リストは、科学技術庁監修、ラティス社発行の「全国試験研究機関名鑑」等より作成した。
（なお、この調査は、財）未来工学研究所に委託して実施した。）
3179の機関に調査票を発送し、回収数は927機関、回収率は29.2%であったが、地域別、産業別の回収率に大きな差はなかった。
以上のことから、集計結果については絶対数ではなく各地域別の構成比で表し、各地域の特徴比較を行った。
集計結果の概要を以下に示す。
①研究者・研究費の地域分布
民間企業の研究開発活動は、図3に示すように東京圏（東京都、神奈川県）に集中している。研究者数で見ると、東京圏に41%、近畿20%、関東15%、東海14%、中国4%、九州3%の順で、北海道、東北、北陸、四国は1%かそれ以下である。
図4は各地域の人口と研究者数の構成比の比率を示している。
東京圏は全国平均の2.6倍、近畿1.2倍、東海1.1倍であり、北海道、東北、四国、九州は全国平均の1/4以下であった。研究開発活動の大都市圏集中、特に中央集中傾向が明瞭である。なお、上位4地域（東京圏、近畿、東海、関東）の人口は全国の61%であるのに対し、研究者数では90%を占める。
各地域の工業生産高と研究費を比較すると、東京圏は工業生産高では4位だが、研究費では1位となっている。生産拠点は東海、関東等大都市圏周辺に分散しているが、研究開発活動は東京圏及び近畿の大都市圏に集中していることが推測できる。
②研究分野別の研究開発活動の地域分布
研究分野別の特徴としては、東京圏には特に機械工学、電気・電子工学が集中している。近畿は化学・繊維、素材系（炭素、銅、新素材）、電気・電子工学の比率が比較的高く、生物・薬剤系の比率が低い。
東海は化学・繊維の比率が高いことが特徴である。
関東は生物・薬剤系、及び素材系の比率が高い。
③その他の地域別の研究開発活動の特徴
研究の性格別（基礎、応用、開発）及び研究者の年齢階層別に見た研究開発活動は、地域ごとに大きな差はない。

(3) 地域ごとの特許出願件数

特許件数は研究開発活動の成果をあらわす有力な指標である。

そこで、都道府県別の特許出願件数（昭和61年）について特許公開公報を用いて調査した。調査対象として、先端技術分野をカバーしている以下の4つの特許分類項目を選び、筆頭発明人住所により都道府県別に集計した。

<table>
<thead>
<tr>
<th>国際特許分類</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 2 3</td>
<td>工作機械；他に分類されない金属加工</td>
</tr>
<tr>
<td>C 0 4</td>
<td>セメント；コンクリート；人造石；セラミックス；耐火物</td>
</tr>
<tr>
<td>C 1 2</td>
<td>生化学；ビール；酒造；ぶどう酒；酢；微生物学；酵素学；突然変異または遺伝子工学</td>
</tr>
<tr>
<td>G 0 6</td>
<td>計算；計数</td>
</tr>
</tbody>
</table>

図5に集計結果を示す。

B 2 3（工作機械等）は東京圏が35％、東海24％、近畿18％、関東12％、中国5％、九州3％、北陸2％、北海道、東北、四国は1％以下であった。

C 0 4（セラミックス等）は東京圏27％、近畿24％と両地域が接近している。

ついて、東海19％、関東13％、中国、九州が7％、東北2％、その他の地方は1％かそれ以下であった。比較的地域分散傾向が見られる。

C 1 2（生化学、遺伝子工学等）は東京圏が35％、近畿27％、関東18％、東海8％、中国5％、九州4％、北陸2％、その他の地方は1％以下であった。

G 0 6（計算・計数）は東京圏に76％が集中している。

ついて、近畿13％、関東6％、東海4％、その他の地方は1％以下であった。

3．おわりに

以上に示したように、我が国の研究開発活動は大都市圏、特に東京圏への集中化傾向が見られる。今後の課題としては、その集中の理由及び研究開発機関の立地の条件を明らかにし、また、地域振興における研究開発活動の役割を明らかにする。
することが重要である。 また、民間企業の研究開発活動について、よりミクロなレベルでの定量的データを得ることも今後の課題である。
そのためには、例えば国内の全事業所に対する全数調査等を考慮する必要がある。
なお、今回の調査については別途報告書にまとめられる予定となっており、集計・分析の詳細についてはそちらを参照されたい。

図 1 大学教員の地域分布
図2 都道府県別の工学部教員分布
図3 民間研究機関の研究者・研究費の地域分布

図4 民間研究機関の人口あたりの研究者数
（全国平均を1とした時の各地域の比率）
図5 特許出願件数構成比

北海道
東北
関東
東京圏
北陸
東海
近畿
中国
四国
九州

（新編改訂版）
3. 来所講演概要/Summary of the Lecture at NISTEP

『未来の都市をめざして』
田村 明 法政大学教授（3月8日、於当研究所）

1. 都市と都市化の概念
20世紀を都市化の時代と位置づければ、21世紀が都市の時代と言える。
都市の発生の過程をみても、都市化というものは連続的に進展してきたものではなく急激な変化がみられる。
すなわち文明史的には、都市のできた時代、現代、それから都市の時代と大きく区分されよう。

このことは、都市人口比率と都市化率との座標でみると明確であり、20世紀以前にもたしかに都市は存在したが、それは農村社会の一部としての都市であって本格的な都市化は20世紀からである。

したがって未来の都市というのは、従来の概念を引きずってはいても質的、量的に全く異なったものであり現在はその過程としてとらえられる。
都市化は過去100年間に急速に進み、特に日本では変化が激激であったため都市問題が特別の意味合いをもってくるのである。

都市化というものは連続的な緩慢な変化ではなく、価値観の変化をもたらし、そこに住む人間の変化をも求めるような急激な変化であるという認識が重要である。
昨年チベットを訪れだが、自然と人間との関わりあいの中で、人間が自然に何らかの手を加えたことが都市の始まりであるとの認識からすれば、チベットには自然と人間との原点がある。
都市には見える部分とその内容としての見えない部分があり、後者はすなわち社会（人間の仕組み）といってもよいのであるが、これをもって自然に働きかけて作ったのが都市である。

技術との関わりでは、社会が自然に働きかける仕組みが技術であるとみている。
技術も個々レベルでの力ももちろんであり、社会が自然に対して技術をもって取り組み、その集積が都市という形をとるのである。
都市化についても、自然、技術体系および社会（システム、価値観等）の三つの要素を個別に、客観的視点でのみとらえるのでなく社会を構成する人間という側面から総合的にとらえることが重要である。

環境という視点からは、これらの三要素がすべて環境であり、その評価も人間の環境としての評価が必要である。

2. 都市の特性

都市にはいくつかの特性があり、中には都市の特性として続いてきているものもあって、これは変わらぬものも多いと思われるが、都市の普及化にともなって顕在化する特性がいくつか有る。

先ず、都市の非自立性であり、これは理解されやすい。

次に、開放性があり、物理的、社会的障壁がないのも都市の特性である。

異質なものの共存ということもある。

都市の特異なものは村であって、都市は異質なものの共存によって情報の交換もあれば取引もあり、新しいものの創造もある。

異質なものの共存には悪い点もあり、各種の衝突があるのであるが、これをいかに最低限にするかは課題として残る。

4番目に、共同空間が見えなくなることがある。

都市というものは見えない空間、サービスによって支えられているものである。

これらの特性は、それぞれ矛盾を内包してはいるものの、良くも悪くもこれからが都市の特性であり、これからの都市は解決されるべき課題である。

3. 都市の課題

都市の体系について、これまでハードの都市をどう作ってきたかについて触れれば、これまでの都市作りはすべて個別判断でありトータルな発想が無かったといっても過言ではない。これが第一の課題である。

もう一つは効率の問題である。これまでの効率は、いわば単一目的達成のための効率であって、ある目的達成のために減殺される効率（価値）は考慮されなかった。このためトータルな価値判断がこれからは必要であろうし、このような
価値基準が出てくるようなシステムがなければ、近視眼的な技術一辺倒では対応できない。つまり、これからの都市作り、町作りは文化を創ることでもあり、その中で技術も活かされるべきであると考える。

未来都市を考える場合、これからの選択として技術システムをどう考えていくべきかについては、技術をあらゆる意味での人間工学、自然工学として捉え、その中で都市をフィジカルに作っていくことが必要と思う。

その他の個別の都市の課題としては、車の問題、廃棄物、エネルギー問題等が挙げられよう。これらも全て物と技術という観点で取り組むべき問題ではなく人間の価値観との関連で考えられるべきことは言うまでもない。

この場合、社会システムとしての土地の利用問題、共同社会の形成のあり方、市民（非価値的な共同体の中に暮らしながら、共同体を意識して自らをその一員と認識する人間）意識の形成等が論議される必要があるろう。

（第4調査研究グループ）

4. その他/Other Topics

©今後の予定（講演）/Upcoming Events

6/16（金）午前10時30分～12時 「1990年代のアメリカにおけるバイオエシックス
論争について」
米本昌平氏（三菱化成生命科学研究所社会科学研究室長）

科学技術庁科学技術政策研究所
〒100 東京都千代田区永田町1-11-39 電話03(581)2391,2392
National Institute of Science and Technology Policy,
Science and Technology Agency, Japan
ADDRESS: 1-11-39, Nagata-cho, Chiyoda-ku, Tokyo, 100
PHONE: 03(581)2391, 2392 FAX: 03(503)3996